Q&A List - GCSE Combined Since - Physics Paper 2

Part 5 - Forces

No.	Question	Answer
1	What type of quantity only has magnitude(size)?	Scalar
2	What type of quantity has magnitude and direction?	Vector
3	We use arrows to represent vectors. What about the arrow represents the size of the vector?	Length
4	The force on an object is defines as the or the acting on the object.	Push/pull
5	Is a force a scalar or a vector quantity?	Vector
6	What do we call the type of force when two interacting objects TOUCH?	Contact
7	What do we call the type of force when two interacting objects DO NOT TOUCH?	Non-contact
8	Examples of contact forces are tension, the normal contact force. Give 2 others.	Air resistance Friction
9	Give the three examples of non-contact forces.	Gravitational Electrostatic Magnetic
10	Weight is the force acting on an object which is caused by	Gravity
11	The force of gravity close to the Earth's surface is caused by the around the Earth.	Gravitational field
12	The weight of an object depends on the gravitational field at the point where the object is.	Strength
13	What is the equation to calculate the weight of an object?	Weight = mass x gravity W = mg
14	What are the standard units for Weight?	N (Newtons)
15	What are the standard units for Mass?	Kg
16	What units do we use for gravitational field strength?	N/kg
17	The weight of an object and the mass of an object are directly	Proportional
18	The weight of an object acts at a single-point, called it's	Centre of mass
19	We measure the weight of an object using a calibrated spring-balance, also called a	Newtonmeter

		·
20	A number of forces acting on an object can be replaced by a single force that has the same effect as all of the original forces. What do we call this single force?	Resultant
21	What is the equation to calculate the work done on an object?	Work Done = force x distance
22	When work is done against friction then energy can be transferred to thermal energy stores. This causes a rise in what of the object and the surroundings?	Temperature
23	At least how many forces need to be applied to an object to stretch, compress or bend it?	Two
24	If a stretched object returns to its original size and shape once all forces have been removed. What type of deformation did it undergo?	Elastic
25	If a stretched object does not return to its original size and shape once all forces have been removed. What type of deformation did it undergo?	Inelastic
26	The force applied to an elastic object is directly to the extension of the object.	Proportional
27	What is the equation that relates the force applied to a spring, the spring constant, and its extension.	Force = spring constant x extension F=ke
28	When a force that stretches or compresses a spring, what type of energy is stored in the spring?	Elastic potential
29	What type of quantities are distance and speed?	Scalar
30	What type of quantities are velocity and displacement?	Vector
31	What are typical speeds for a person walking, running and cycling?	1.5m/s 3m/s 6m/s
32	What is the speed of sound?	330 m/s
33	What is the equation for the distance travelled by an object moving at a constant speed in a specific time?	Distance = speed x time
34	An object falling through a fluid initially accelerates because of	gravity
35	For the object in the fluid, eventually the resultant force will be zero and the object will move at its velocity.	Terminal
36	If the resultant force acting on an object is zero and the object is stationary, then the object	Remains stationary
37	Newton's second law says that acceleration is proportional to the acting on the object, and inversely proportional to the of the object.	Force Mass
38	State the equation linking resultant force, mass and acceleration.	Force = mass x acceleration F = ma
39	Newton's third law tell us that when two objects interact, the forces they exert on each other are and	Equal and opposite

40	The total stopping distance for a vehicle is the sum of	Thinking distance
40	which two distances.	Braking distance
41	Which distance is the distance travelled between the driver noticing a hazard and applying the brakes?	Thinking distance (reaction time)
42	Which distance is the distance travelled between the brakes being applied and the vehicle coming to a stop?	Braking distance
43	Name two things, other than speed, that a person's reaction time can depend on.	Tiredness, drugs, alcohol
44	Name four things other than speed, that braking distance can depend on.	Wet weather, ice on roads, faulty or worn brakes, poor tyre condition

Part 6 - Waves

No.	Question	Answer
1	Give an example of transverse waves	Water Light
2	Give an example of longitudinal waves.	Sound
3	For transverse waves, what can we say about the direction of the vibrations and the direction of the energy transfer?	Right angles (perpendicular)
4	For longitudinal waves, what can we say about the direction of the vibrations and the direction of the energy transfer?	Parallel
5	Which type of wave shows areas of compression and rarefaction?	Longitudinal
6	What quantity is the number of waves that pass a point each second?	Frequency
7	Wavespeed is the speed at which the is transferred through the medium.	Energy
8	What is the wave equation that links wave speed, frequency and wavelength?	Wave speed = frequency x wavelength
9	To find the speed of water waves we use a tank.	Ripple
10	What type of waves are electromagnetic waves?	Transverse
11	What do the transfer from the source of the waves to an absorber?	Energy
12	What do we know about all electromagnetic waves travelling through a vacuum?	They travel at the same speed
13	Name the waves in the electromagnetic spectrum.	Radio Microwaves Infrared Visible Ultraviolet (UV) X-ray Gamma

14	Which wave in the EM spectrum has the longest wavelength?	Radio waves
15	Which wave in the EM spectrum has the shortest	Gamma
	wavelength? Which wave in the EM spectrum is the only one	
16	detectable with our eyes?	Visible light
17	Which type of electromagnetic waves do hot objects give out?	Infrared
18	Which type of electromagnetic wave can be given out by an unstable nucleus of an atom?	Gamma
19	A Leslie cube can be used to determine the amount of which type of radiation emitted or absorbed by a surface?	Infrared
20	Which two surface properties does a Leslie cube compare?	Shiny Matt
21	On a Leslie cube, which surface properties emit the most radiation?	Matt black
22	On a Leslie cube, which surface properties absorb the most radiation?	Matt black
23	On a Leslie cube, which surface properties reflect the most radiation?	Shiny White
24	UV waves, X-rays and gamma rays can have hazardous effects on human body tissue. What two things do the effects on body tissue depend on?	Type of radiation Size of the dose
25	Name 2 effects that UV waves can have on skin?	Sunburn Skin cancer
26	What type of radiation are X-rays and gamma rays?	lonising
27	What effect do X-rays and gamma rays have on body tissue?	Gene mutations and cancer
28	Give 2 uses of radiowaves.	TV and Radio signals
29	Give 2 uses of microwaves.	Cooking Satellite communication
30	Give 3 uses of infrared radiation.	Cooking Remote controls IR cameras
31	Give a use of visible light.	Fibre optics communication
32	Give 2 uses of UV waves.	Sun tan lamps / Sunbeds energy efficient lamps
33	Give 2 uses of X-rays and gamma rays.	Medical imaging Treatment e.g. kill cancer cells

Part 7 - Magnetism

No.	Question	Answer
1	The region in which other magnets, magnetic materials and wires carrying a current experience a force is called a	Magnetic field
2	Where is the magnetic field strongest?	At the poles
3	All magnets have two poles called, and .	North and south
4	The strength of a magnetic field with distance from the magnet.	Decreases
5	Which pole do magnetic field lines point away from?	North
6	Which pole do magnetic field lines point towards?	South
7	Like poles and unlike poles	Repel, attract
8	Induced magnets are magnetic materials that turn into magnets when they are in a	Magnetic field
9	The force between permanent magnets and induced magnets is always	Attractive
10	A flowing through a conductor generates a magnetic field.	Current
11	The hand thumb rule can show the direction of the field around a wire.	Right
12	The strength of the magnetic field generated by a current increases with the size of the and decreases with from the wire.	Current, distance
13	Bending a current carrying wire into a coil (solenoid) the magnetic field strength.	Increases
14	Name three ways to increase the strength of the magnetic field of a solenoid.	More turns on coil More current Iron core
15	An electromagnet is a solenoid with an core.	Iron

TEST YOURSELF - Q&A List - GCSE Combined Since - Physics Paper 2

TEST YOURSELF - Part 5 - Forces

No.	Question	Answer
1	What type of quantity only has magnitude(size)?	
2	What type of quantity has magnitude and direction?	
3	We use arrows to represent vectors. What about the arrow represents the size of the vector?	
4	The force on an object is defines as the or the acting on the object.	
5	Is a force a scalar or a vector quantity?	
6	What do we call the type of force when two interacting objects TOUCH?	
7	What do we call the type of force when two interacting objects DO NOT TOUCH?	
8	Examples of contact forces are tension, the normal contact force. Give 2 others.	
9	Give the three examples of non-contact forces.	
10	Weight is the force acting on an object which is caused by	
11	The force of gravity close to the Earth's surface is caused by the around the Earth.	
12	The weight of an object depends on the gravitational field at the point where the object is.	
13	What is the equation to calculate the weight of an object?	
14	What are the standard units for Weight?	
15	What are the standard units for Mass?	
16	What units do we use for gravitational field strength?	
17	The weight of an object and the mass of an object are directly	
18	The weight of an object acts at a single-point, called it's	
19	We measure the weight of an object using a calibrated spring-balance, also called a	

20	A number of forces acting on an object can be replaced by a single force that has the same effect as all of the original forces. What do we call this single force?	
21	What is the equation to calculate the work done on an object?	
22	When work is done against friction then energy can be transferred to thermal energy stores. This causes a rise in what of the object and the surroundings?	
23	At least how many forces need to be applied to an object to stretch, compress or bend it?	
24	If a stretched object returns to its original size and shape once all forces have been removed. What type of deformation did it undergo?	
25	If a stretched object does not return to its original size and shape once all forces have been removed. What type of deformation did it undergo?	
26	The force applied to an elastic object is directly to the extension of the object.	
27	What is the equation that relates the force applied to a spring, the spring constant, and its extension.	
28	When a force that stretches or compresses a spring, what type of energy is stored in the spring?	
29	What type of quantities are distance and speed?	
30	What type of quantities are velocity and displacement?	
31	What are typical speeds for a person walking, running and cycling?	
32	What is the speed of sound?	
33	What is the equation for the distance travelled by an object moving at a constant speed in a specific time?	
34	An object falling through a fluid initially accelerates because of	
35	For the object in the fluid, eventually the resultant force will be zero and the object will move at its velocity.	
36	If the resultant force acting on an object is zero and the object is stationary, then the object	
37	Newton's second law says that acceleration is proportional to the acting on the object, and inversely proportional to the of the object.	
38	State the equation linking resultant force, mass and acceleration.	
39	Newton's third law tell us that when two objects interact, the forces they exert on each other are and	

40	The total stopping distance for a vehicle is the sum of which two distances.	
41	Which distance is the distance travelled between the driver noticing a hazard and applying the brakes?	
42	Which distance is the distance travelled between the brakes being applied and the vehicle coming to a stop?	
43	Name two things, other than speed, that a person's reaction time can depend on.	
44	Name four things other than speed, that braking distance can depend on.	

TEST YOURSELF - Part 6 - Waves

No.	Question	Answer
1	Give an example of transverse waves	
2	Give an example of longitudinal waves.	
3	For transverse waves, what can we say about the direction of the vibrations and the direction of the energy transfer?	
4	For longitudinal waves, what can we say about the direction of the vibrations and the direction of the energy transfer?	
5	Which type of wave shows areas of compression and rarefaction?	
6	What quantity is the number of waves that pass a point each second?	
7	Wavespeed is the speed at which the is transferred through the medium.	
8	What is the wave equation that links wave speed, frequency and wavelength?	
9	To find the speed of water waves we use a tank.	
10	What type of waves are electromagnetic waves?	
11	What do the transfer from the source of the waves to an absorber?	
12	What do we know about all electromagnetic waves travelling through a vacuum?	
13	Name the waves in the electromagnetic spectrum.	
14	Which wave in the EM spectrum has the longest wavelength?	

15	Which wave in the EM spectrum has the shortest wavelength?	
16	Which wave in the EM spectrum is the only one detectable with our eyes?	
17	Which type of electromagnetic waves do hot objects give out?	
18	Which type of electromagnetic wave can be given out by an unstable nucleus of an atom?	
19	A Leslie cube can be used to determine the amount of which type of radiation emitted or absorbed by a surface?	
20	Which two surface properties does a Leslie cube compare?	
21	On a Leslie cube, which surface properties emit the most radiation?	
22	On a Leslie cube, which surface properties absorb the most radiation?	
23	On a Leslie cube, which surface properties reflect the most radiation?	
24	UV waves, X-rays and gamma rays can have hazardous effects on human body tissue. What two things do the effects on body tissue depend on?	
25	Name 2 effects that UV waves can have on skin?	
26	What type of radiation are X-rays and gamma rays?	
27	What effect do X-rays and gamma rays have on body tissue?	
28	Give 2 uses of radiowaves.	
29	Give 2 uses of microwaves.	
30	Give 3 uses of infrared radiation.	
31	Give a use of visible light.	
32	Give 2 uses of UV waves.	
33	Give 2 uses of X-rays and gamma rays.	

TEST YOURSELF - Part 7 - Magnetism

No.	Question	Answer
No.	Question	Answer

1	The region in which other magnets, magnetic materials and wires carrying a current experience a force is called a	
2	Where is the magnetic field strongest?	
3	All magnets have two poles called, and	
4	The strength of a magnetic field with distance from the magnet.	
5	Which pole do magnetic field lines point away from?	
6	Which pole do magnetic field lines point towards?	
7	Like poles and unlike poles	
8	Induced magnets are magnetic materials that turn into magnets when they are in a	
9	The force between permanent magnets and induced magnets is always	
10	A flowing through a conductor generates a magnetic field.	
11	The hand thumb rule can show the direction of the field around a wire.	
12	The strength of the magnetic field generated by a current increases with the size of the and decreases with from the wire.	
13	Bending a current carrying wire into a coil (solenoid) the magnetic field strength.	
14	Name three ways to increase the strength of the magnetic field of a solenoid.	
15	An electromagnet is a solenoid with an core.	