Knowledge Organiser Booklet Year 10 Term 3

Core

Our working memories can only store a limited amount of information, whereas our long term memories can store limitless information. To learn successfully, we need to store core knowledge into our long term memories, so we can retrieve it when we need it.

For instance, if you are at work or in the shops and need to work out a 25% discount, you can't memorise 25% of every number, so you need to be able to quickly recall the method for calculating a percentage. Committing core knowledge to our longterm memories is a life-hack. It makes thinking about difficult things easier.

Using a knowledge organiser with regular retrieval activities is a way for you to store core knowledge \& subject specific words, into your long term memory so it is there when you need it.

Click here to be taken to the knowledge organiser part of the school website.

Contents

Clicking on the subjects below will take you directly to the knowledge organisersfor each subject. These are to support learning that has taken place this past term.Use these to help reinforce the key knowledge. Use some of the strategiesexplained in the introduction to help you retain this important information.
Blending Learning expectations Page 3
How to use a Knowledge Organiser Page 4
Biology Page 11
Chemistry Page 13
English Language Page 15
English Literature Page 18
Maths. Page 20
PSHE Page 26
Physics Page 27
RSE Page 30
Triple Science Page 31

D) OnO OH

Make sure you have access to a computer at home (If you don't please make pastoral staff aware or email langley.homelearning@taw.org.uk)

Download Microsoft Teams on both your phone and computer. (If you don't know how to do this please ask a member of staff or do this in your next computing lesson)

Spend at least 2 hours a week using teams EVERY WEEK. (Engagement in teams can be tracked and monitored). You need to be accessing each of your class teams and recapping on the previous learning or completing additional tasks set by your class teacher.

If you have any issues with teams (e.g. login problems or missing classes etc then please email langley.homelearning@taw.org.uk)

Teams is a tool to support ongoing learning and should only be used for educational purposes.

	LOOK, COVER, WRITE, CHECK	DEFENTIONS TO KEY WORDS	FLASHCARDS	DUAL CODENG
$\begin{aligned} & \text { M } \\ & 11 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	Look at \& study an area of your knowledge organiser	Write down the key words \& definitions	Write key words, dates/formulae, equations/quotes on one side \& answers on the other	Draw pictures/diagrams/ cartoon strips
$$	Cover up your knowledge organiser and write everything you remember	Cover up the definitions. How many can you remember? Repeat.	Include pictures or diagrams if it helps. Read through them.	Label your pictures/diagrams/ cartoon strips
MMC--	Check. Correct mistakes in green and add anything you missed. Repeat	Check. Correct mistakes in green pen. Which ones do you find hard to remember?	Test yourself and get someone to test you.	Explain out loud to yourself or family/friend what your images show
	SELF GUIRZANG	MINDMAPS	PALRED RETRIEVAL	SPEAK, COVER, WRITE, CHECK
	Use your knowledge organiser to create quiz questions.	Create a mindmap of everything you can remember from your knowledge organiser	Give a family member/friend the knowledge organiser to hold	Read out loud the information from the knowledge organiser several times.
	Write down the answers to your quiz	Check your knowledge organiser \& use a green pen to make any corrections.	Get them to test you using the knowledge organiser	Cover up your knowledge organiser and write everything you remember
$\begin{aligned} & m \\ & 11 \\ & 1 \\ & 6 \\ & 6 \end{aligned}$	Keep self-quizzing until you get all the answers correct X V	Add additional information to your mindmap or make connections to other knowledge	Write down your answers to their questions	Check. Correct mistakes in green and add anything you missed. Repear.

Retrieval Placemat

Look at your knowledge organiser. Now cover it up and write down Key vocabulary \& definitons from memory:

First time: Look. Second time: Look. Third time: Look.
Cover. State 3 facts
Cover. State 3 facts

Look at the knowledge organiser again. Now cover it up and without looking, explain a concept or idea in your own words

Re-read your answer above. Look at the knowledge organiser again. Now cover it up and improve on your previous explanation in green pen.

Retrieval Relay

Look at your knowledge organiser. Now cover it up.

First time: Write down
everything you can
remember

Second time: Look.
Cover. Write down
everything you can
remember

Third time: Look.
Cover. Write down
everything you can
remember

Write down everything here that you didn't remember:

Vocabulary focus 1

Look at your knowledge organiser. Select a key word and write it here:

Write a definition of the key word in your own words - not the same as the one on the knowledge organiser:

Write a sentence with the key word in it:

Create a question where the key word is the answer:

What other words are connected to this key word?

Draw a picture or diagram to help you remember this key word:

Vocabulary focus 2

Definition:

Characteristics:

Key word:

Examples:
Non-examples:

What should my knowledge organiser homework look like?

What should my knowledge organiser homework look like?

Homework activity written and underlined

Stages of homework
activity as subtitles

Biology

Variation

Threshold Concept

All living things need to change to live.

Variation

Individuals in a population are usually similar to each other, but not identical. Some of the variation within a species is genetic, some is environmental the conditions in which they have developed and some is a combination of both

Evolution

Evolution is the change of irw characteristics within a population over time through natural selection, which may result in the formation of a new species Five main processes that lead to evolution:
-mutation
-non-random mating
-gene flow
-finite population size (genetic drift) -natural selection.

Fossils

A fossil is the preserved remains of a dead organism from millions of years ago. Evidence for early forms of life comes from fossils. By studying fossils, scientists can learn how much (or how little) organisms have changed as life developed on Earth

Keywords

Variation....... any difference between the individuals in a species or groups of organisms of any species
Evolution the change in the characteristics of a species over several generations and relies on the process of natural selection
Adaptation...... the adjustment of organisms to their environment in order to improve their chances at survival in that environment Natural Selection....... the process through which populations of living organisms adapt and change

Natural Selection

In any environment, the individuals that have the best adaptive features are the ones most likely to survive and reproduce

Selective Breeding.

selected
parents
Selective breeding or artificial selection is when humans breed plants and animals for particular genetic characteristics. Humans have bred food crops from wild plants and domesticated animals for thousands of years

Genetic Engineering

Genetic engineering involves modifying the genome of an organism by introducing a gene from another organism to result in a desired characteristic

[^0]Chemistry

Making salts

Threshold Concept

How do metals and acids react to make salts and water

Neutralisation

When an acid and alkali react they form neutral product water.
The $\mathrm{H}+$ ions from the acid react with the $\mathrm{OH}-$ ions from the alkali to form water.
This can be represented using the following ionic equation:

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{\mathbf{2}} \mathrm{O}
$$

Titration req prac (triple)

Redox reactions (higher tier)
|Redox reactions are when oxidation and reduction I (in terms of electron transfer) take place at the I same time.
For example:
$\mathrm{I}_{2} \mathrm{H}^{+}+\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2}$
|The ionic equation can be further split into two half equations.
$\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$
Oxidation is loss of electrons.
$12 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
Reduction is gaining of electrons.

Keywords

Reactivity - the ability for an atom or molecule to undergo a chemical reaction
Salt-a substance made of positive and negative ions
Sulphuric acid - an acid that contains sulphate ions
I Nitric acid - an acid that contains nitrate ions
Hydrochloric acid - an acid that contains chloride
| Balanced - equal on both sides
Symbol equation - a chemical equation using chemical symbols
Acidic - a solution that contains H^{+}ions
Alkaline - a solution that contains OH^{-}ions

The pH scale

Acids contain H^{+}ion and alkalis contain OH^{-}ions. The pHI scale is used to measure the acidity of a substance. It
 Acidic $=\mathrm{pH}<7$
Neutral $=\mathrm{pH} 7$
Alkaline $=\mathrm{pH}>7$

Acid Used	Salt Produced
hydrochloric	chloride
nitric	nitrate
sulfuric	sulfate

$$
\text { acid + metal } \rightarrow \text { salt + hydrogen }
$$

hydrochloric acid + zinc \rightarrow zinc chloride + hydrogen

$$
2 \mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

$$
\begin{gathered}
\text { acid }+ \text { alkali } \rightarrow \text { salt }+ \text { water } \\
\text { nitric acid }+ \text { sodium hydroxide } \rightarrow \text { sodium nitrate }+ \text { water } \\
\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

acid + carbonate \rightarrow salt + water + carbon dioxide
sulfuric acid + zinc oxide \rightarrow zinc sulfate + water

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{ZnO} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Strong and weak acids

Strong acids are acids that fully ionise in water

$$
\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

Weak acids are acids that partially ionise in water

$$
\mathrm{CH}_{3} \mathrm{COH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

English Language

Threshold Concept- Year 10-Language- Reading:

TCl -Understanding texts: identifying explicit and implicit information; selecting accurate and precise quotations.
TC2 - Demonstrate and appreciation of the writer's craft through analysis and critically evaluative comments.
TC4 - Evaluate writer's craft including comparison skills.

Showing your understanding of texts- use PEEZL to structure your answers.

Component 1 , Question 2 response- $5 / 5$ marks.

Point-rephrase key words from question to start your answer.
Evidence- introduce quotation(s).
Mention techniques here! Explanation - explain what quotations shows. Zoom- pick a single word choice made by the writer and explain what it implies.

Link to reader - mention how reader may react and why.

You should use this info
to get the base knowledge needed to confidenily answer the different types of question on component 1 and 2.

The wriker creates the impression thet, there is is misundectandiny betwen the chanaders of Enma and RAbie. For eximples the uriter describes how ksobie "was well known- for hús "grampiness", yet "Emmas mistorke it for shapass". The fact that Emma mistidles his goumpy atbibude for being shy omphasises hon" the couple do not fully understarde each ther ors they misintempet seoul others belacuions.

The uniter who coules the omparession that Emma and Robbier are 6oth very different people. Whilst Roboie is "twenty yeurs otser than her" and quite groumpy, Empa is impressionedte and slightely haive as she beliares"te nos mare matare then he vors" as a result of his sulking uttitade, This implession is rideatod when the invere explairs how after a veeck "Empra was fesling the red for some tive, apeote frome Rabie". This highlights He distunt nutwe of their relationsins and suggets it may mot be as strong or loning as she becieves.

Expressing higher order ideas in explanations (for analysis/evaluation).

Use this to transform your responses from this...

The quotation: "as strong as a bull" reflects that the man is like a strong cow. X

To this...
The quotation "as strong as a bull" shows that the man in question is a powerful physical specimen. It may also reflect the man is mentally łough, perhaps even slubborn. The noun "bull" might reflect the writer's intention to show that the man is aggressive, perhaps foreshadowing harm he does to others later in the story. \checkmark

Identifying language and structural features.

Read lines 7-16.
What impressions does the writer create of Emma and Robbie in these lines? [5] You must refer to the language used in the text to support your answer, using relevant subject terminology where appropriate.
Whenever you see the highlighted words, try to identify and mention the writer's technique choices in your essays.

Common language techniques	Common structural features
Simile	Lists
Metaphor	Repetition of words
Personification	Lexical (word) patterning
Adjective	Repetition of a technique
Adverb	Tone shift

Use this to

 transform your responses from this...The quotation: "as strong as a bull" shows...

To this...

The quotation: "as strong as a bull" is a simile, which shows...

Comparing successfully- using comparative connectives.

Words thot signal a comparison	Words that signal a contast
- As	, homever
- Also	- Although
- Like	- Whereas
- Alike	- In contrast
- Likewise	. Yet
- Resembles	- Differs from
- Similor	- Instead
- Justas	- Unlike
- Just like	- On the contrary
- Equally	- Different from
- Same both	- On the other hand

Platinum answers may include: The words "more" "less" regularly AND comparative adjectives.

Words that end in 'er' that compare two things i.e. greater.

Use these frequently when comparing nonfiction texts.

Both the 'Penny Review and miners being rescued. Thiscreates a sense of drama as the rest of the texts build up tension and anticipation for their rescue. However, in the Chilean article the day of the rescue is also mentioned at the beginning: the "scenes of jubilation erupted" as the miners were rescued. This dramatic verb 'erupted' portrays the excitement and

Threshold Concept- Year 10-Writing:

TC5-Communicate clearly, effectively, and imaginatively, selecting and adapting tone, style and register for different forms, purposes and audiences.
TC6 - Organise information and ideas, using structural and grammatical features to support coherence and cohesion of texts
TC7 - Use a range of sentence structures for clarity, purpose and effect, with accurate punctuation and spelling.

To be a successful writer, you need to juggle all of these different skills.

Techniques:

Ask yourself these questions:
-Do I know what all these techniques are?
-Do luse a range of these /and maybe even some others!) in my own writing?

Structure:

For fiction texts-SCII:
40 min successful plot structure- SCIT.
Section 1: Describe the setting.

Section 2: Describe the main character.
Section 3: Describe ONE incident.
Section 4; Describe how the
setting/character has now transformed.

For non-fiction texts-PAF:

Purpose	WHY you are writing your non- fiction text.	Inform, persuade, advise, review, entertain.
Audience	WHO you are writing to/for.	Wide audience, council, parents, tourists, teenagers.
Form	WHAT you are writing and HOW it is uniquely laid out.	Letter, magazine article, newspaper article advertisement, speech.

Ask yourself these questions:
Does my writing achieve what I want it to? Do I adapt my writing (i.e. word/language choices) based on the task I am set?

English Literature

Threshold Concept- Year 10- An Inspector Calls:

TC1 - Understanding texts
TC2 - Demonstrate an appreciation of the writer's craft through a nalysis and critic ally evaluative comments.

A plot and character summary of 'An Inspector Calls:' Full text (if on MS Teams) = An Inspector Calls audiobook

You should use this information to get the base knowledge needed for J.B. Priestley's play.

- Recount what happens from start to finish in the play?
- Explain who the primary characters are, and what makes them unique?

Eg. Mr Birling is an ignorant Capitalist who sacked Eva Smith for demanding equal pay.

How to analyse the writer's craft- mention the writer's name and all of the choices they make. Example on Sheila (foc us on trying to write explanations like you see in green here.)

The character of Sheila Birling is used to reflect that the younger generation have a chance to be different to their elders. The quotation: "these girls aren't cheap labour, they're people" shows Sheila's new understanding that women (regardless of class) should be treated more equally to men. J. B. Priestley has her criticise her male relatives who "treat females as lower beings. The adjective "cheap" is used by the writer to show that she feels they are worth more than how society sees them The original audience may dislike a worman challenging a man at this time as it is not the norm at all, though Sheila would be celebrated by a more modern qudience as she is seen more so as a strong feminist figure, similar to the suffragettes.

In order to be successful, you must know a range of different moments from the whole play. For example, othermoments where Sheila is important include:

- Sheila's introduction as Sheltered and childish "mummy" "daddy"
- Sheila's new-found power in her speech and interruptions "(cutting in)" - Sheila's change and refusal to accept Gerald's engagement ring. "No...I must think"

Developing this further- disc ussing audience reaction.

A really effective way to showcase your understanding of the text is by comparing how an original audience might react vs. how a modem audience might react (see the blue part of the WAGOL above). This is how we do this:

Edna is lucky to work for the Birlings. She hasa stable job and an opportunity to live in a beautiful house. (Orig inal theatre-goers more likely to have maids and be Capitalists.)

Edna is unlucky to work for the Birlings. She would eam very little indeed and has to wait on a whole fa mily at all hours of the day. (Modem audiences more sympathetic to working-class)

Try to consider, as you read the play, your own reactions to characters/ events. Then compare this to how an
audience in 1946 (with very different views to us) would react.

Maths

YEAR 10 －DELVING INTO DATA．．．
 ＠uhisto＿maths

I What do I need to be able to do？

｜
｜By the end of this unt you should be abe to：
1－Construct and interpret frequency tables
and polygon two－way tables，line，bar，\＆pie charts
I．Find and interpret averages from a list and

a table

1－Construct and interpret time series graphs， stem and leaf diagrams and scatter graphs

Keywords

Popuation：the whole group that is being studied
I Sample：a selection taken from the population that will let you find out information about the larger group
I Representative：a sample group that accurately represents the population
I Random sample：a group completely chosen by change No predictability to who it will include．
Bias：a buitt－in error that makes all values wrong by a certain amount
Primary data：data collected from an original source for a purpose．
Seconsdary dataa datat taken from an extemal boation Not colected drectly
1）autier：a value that stands apart from the data set
Lーーーーーーーーーーーーー

[^1]
year 10 －delung into data．．．
 ＠uhisto＿maths

I What do I need to be able to do？
｜By the end of this unt you should be able to：
1－Construct and interpret frequency tables
and polygon two－way tables，ine，bar，\＆pie I charts
I．Find and interpret averages from a list and
－Construct and interpret time series graphs， stem and leaf diagrams and scatter graphs

Keywords

Population：the whole group that is being studied
Sample：a selection taken from the population that will let you find out information about the larger group
Representative：a sample group that accurately represents the population
I Random sample：a group completely chosen by change．No predictability to who it will include．
Bias：a buit－in error that makes all values wrong by a certain amount
Primary data：data collected from an original source for a purpose．
Secondary data：data taken from an external location Not collected directly
I Outier：a vave that stanos apart from the data set

IStem and leaf a nay to reperesent dita a and se to form wereraes

This stem and leaf diagram shows the age of people in a line at the supermarket．

Draw and interpret a scatter graph

Age of Car（Years）	2	4	6	8	10
Value of Car（Es）	750	6250	4000	3500	2500

1．This data may not be given in size order
－The data forms information pairs for the scatter graph

The line of best fit \mathbb{R}

I The Line of best fit is used to make estimates about the information in your scatter graph

Things to know

The line of best fit DOES NOT need to go through the origin（The point the axes cross）
－There should be approximately the same number of points above and below the ine It may not go through any points）
－The line extends across the whole graph

It is only an estimate
because the line is
designed to be an average
representation of the data
It is aways a straight line．

Usinga ine of best tit（ 8

Interpolation is using the line of best fit to estimate values inside our data point．
eg 40 hours revising predicts a percentage of 45

Extrapolation is where we use our line of best fit to predict information outside of our data ＊＊This is not always useful－in this example you cannot score more that 100% So revising for longer can not be estimated＊＊

This point is an＂outier＂

It is an outlier because it doesn＇t fit this model and stands apart from the data

YEAR 10 - USING NUMBER...
 @uhisto_maths
 Non-calculator methoods

YEAR 10 - USING NUMBER Types of number ε sequences
 @whisto_maths

What do I need to be able to do?

Mutiples The "times tabe" of a given number

Keywords

| Factor: numbers we multiply together to make another number
I Mutiple: the resilt of mutipling a number by an integer
I HCF: highest common foctor. The bigesest factor that numbers share
LCM: bwest common multipe. The first multiple numbers share
arithmetic: a sequence where the ifference between the terms is constant
Geometric: a sequence where each term is found by multipling the previous one by a fued nonzero number
Sequence: tems or numbers put in a pre--decided order

all three pmire factor trees represent the same decarposition

$30=2 \times 3 \times 5$

Using prme Factors for predictions

$$
\begin{array}{rll}
60 & 30 \times 2 & 2 \times 3 \times 5 \times 2 \\
150 & 30 \times 5 & 2 \times 3 \times 5 \times 5
\end{array}
$$

I arithmetic/Geometric sequences

arithmetic Sequences change by a common difference. This is found by addition or subtraction between terms

Geometric Sequences change by a common ratio. This I is found my mutipication/ division between terms.

Term to term rule - how you get from one term (number in the sequence) to the next term

Position to term rule - take the rule and substiute in a position to find a term Eg. Mutiply the position number by 3 and then add 2
"IOther sequences
||

Fibonacci Sequence
$1,1,2,3,5,8 \ldots$

II Finding the nth term Eachterm is the II sum of the previous Il two terms |l
|| Triangular Numbers - look at the formation
||

verr 10 - ISIMG wiver...

@uhhisto maths

What do I need to be able to do?
 | By the end of this unit you should be able to:
 1- Identify square and cube numbers
 1-Calculate higher powers and roots
 I - Understand powers of 10 and standard form
 I Know the addition and subbraction rule for indices
 - Understand power zero and negative indices
 - Calculate with numbers in standard form

Keywords

Standard (index) Form: A system of writing very big or very small numbers
I Commutative: an operation is commutative if changing the order does not change the result.
I Base: The number that gets mutipied by a power
I Power: The exponent - or the number that tells you how many times to use the number in mutiplication Exponent: The power - or the number that tells you how many times to use the number in mutipication Indices: The power or the exponent.
Negative: a value below zero.
Coefficient: The number used to multiply a variable

PSHE

Physics

RSE

Triple Science

Variation

Threshold Concept

All living things need to change to live.

Variation

Individuals in a population are usually similar to each other, but not identical. Some of the variation within a species is genetic, some is environmental the conditions in which they have developed and some is a combination of both

Evolution

Evolution is the change of irw characteristics within a population over time through natural selection, which may result in the formation of a new species Five main processes that lead to evolution:
-mutation
-non-random mating
-gene flow
-finite population size (genetic drift) -natural selection.

Fossils

A fossil is the preserved remains of a dead organism from millions of years ago. Evidence for early forms of life comes from fossils. By studying fossils, scientists can learn how much (or how little) organisms have changed as life developed on Earth

Keywords

Variation....... any difference between the individuals in a species or groups of organisms of any species
Evolution the change in the characteristics of a species over several generations and relies on the process of natural selection
Adaptation...... the adjustment of organisms to their environment in order to improve their chances at survival in that environment Natural Selection....... the process through which populations of living organisms adapt and change

Natural Selection

In any environment, the individuals that have the best adaptive features are the ones most likely to survive and reproduce

Selective Breeding.

selected
parents
Selective breeding or artificial selection is when humans breed plants and animals for particular genetic characteristics. Humans have bred food crops from wild plants and domesticated animals for thousands of years

Genetic Engineering

Genetic engineering involves modifying the genome of an organism by introducing a gene from another organism to result in a desired characteristic

[^2]
Making salts

Threshold Concept

How do metals and acids react to make salts and water

Neutralisation

When an acid and alkali react they form neutral product water.
The $\mathrm{H}+$ ions from the acid react with the $\mathrm{OH}-$ ions from the alkali to form water.
This can be represented using the following ionic equation:

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{\mathbf{2}} \mathrm{O}
$$

Titration req prac (triple)

Redox reactions (higher tier)
|Redox reactions are when oxidation and reduction I (in terms of electron transfer) take place at the I same time.
For example:
$\mathrm{I}_{2} \mathrm{H}^{+}+\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2}$
|The ionic equation can be further split into two half equations.
$\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$
Oxidation is loss of electrons.
$12 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
Reduction is gaining of electrons.

Keywords

Reactivity - the ability for an atom or molecule to undergo a chemical reaction
Salt-a substance made of positive and negative ions
Sulphuric acid - an acid that contains sulphate ions
I Nitric acid - an acid that contains nitrate ions
Hydrochloric acid - an acid that contains chloride
| Balanced - equal on both sides
Symbol equation - a chemical equation using chemical symbols
Acidic - a solution that contains H^{+}ions
Alkaline - a solution that contains OH^{-}ions

The pH scale

Acids contain H^{+}ion and alkalis contain OH^{-}ions. The pHI scale is used to measure the acidity of a substance. It
 Acidic $=\mathrm{pH}<7$
Neutral $=\mathrm{pH} 7$
Alkaline $=\mathrm{pH}>7$

Acid Used	Salt Produced
hydrochloric	chloride
nitric	nitrate
sulfuric	sulfate

$$
\text { acid + metal } \rightarrow \text { salt + hydrogen }
$$

hydrochloric acid + zinc \rightarrow zinc chloride + hydrogen

$$
2 \mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

$$
\begin{gathered}
\text { acid }+ \text { alkali } \rightarrow \text { salt }+ \text { water } \\
\text { nitric acid }+ \text { sodium hydroxide } \rightarrow \text { sodium nitrate }+ \text { water } \\
\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

acid + carbonate \rightarrow salt + water + carbon dioxide
sulfuric acid + zinc oxide \rightarrow zinc sulfate + water

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{ZnO} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Strong and weak acids

Strong acids are acids that fully ionise in water

$$
\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

Weak acids are acids that partially ionise in water

$$
\mathrm{CH}_{3} \mathrm{COH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

[^0]: Required Practical
 Equations for this topic

[^1]: I Draw and interpret Pie Charts R

 | Type dipet | Dog | at | Hamster | There were 60 people asked in this survey
 －（Total frequency） |
 | :---: | :---: | :---: | :---: | :---: |
 | Frequency | 32 | 25 | 3 | |
 | $\frac{32}{60}$＂32 out of 60 people had a dog＂ | | | | Mutiple method
 as 60 goes into 360 － 6 times． Each frequency can be muttiplied by 6 to find the degrees（proportion of 360） |
 | | | | | |
 | | | | | |

 Comparing Pie Charts： represents dogs $\frac{32}{60} \times 360=192^{\circ} \quad \begin{array}{r}\text { You NEED the overall } \\ \text { frequency to make any }\end{array}$

 Find the sum of the data（add the values） 55
 Divide the overall total by how many pieces of data you have
 $55 \div 5$
 Mean＝ 11

 The Mode（The modal value）
 This is the number OR the item that occurs the most lit does not have to be numerical

 ## The Median

 The value in the center（in the modde）of the data

 ## 24，8，4，11，8，

 Mode $=8$
 This can still be easier if it the data is ordered first

 Put the data in order $\quad 4,8,8,11,24$
 Find the valve in the midole $4,8,8,11,24$
 Median $=8$

 NOTE：If there E no singe mide vale find the mean of the two numbers eft

 For Grouped Data
 The modal group－which group has the highest frequency

[^2]: Required Practical
 Equations for this topic

