Making salts

Threshold Concept

How do metals and acids react to make saltis and water

Neutralisation

When an acid and alkali react they form neutral product water.
The $\mathrm{H}+$ ions from the acid react with the OH ions from the alkali to form water.
This can be represented using the following ionic equation:

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Titration req prac (triple)

Redox reactions (higher tier)

Redox reactions are when oxidation and reduction I (in terms of electron transfer) take place at the I same time.
For example:
$\mathrm{I}_{2} \mathrm{H}^{+}+\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2}$
|The ionic equation can be further split into two half equations.
$\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$
I Oxidation is loss of electrons.
$12 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
Reduction is gaining of electrons.

Keywords

Reactivity - the ability for an atom or molecule to undergo a chemical reaction
Salt-a substance made of positive and negative ions
Sulphuric acid - an acid that contains sulphate ions
I Nitric acid - an acid that contains nitrate ions
| Hydrochloric acid - an acid that contains chloride
| Balanced - equal on both sides
Symbol equation - a chemical equation using chemical symbols
Acidic - a solution that contains H^{+}ions
Alkaline - a solution that contains OH^{-}ions

The pH scale

Acids contain H^{+}ion and alkalis contain OH^{-}ions. The pHI scale is used to measure the acidity of a substance. It
 Acidic $=\mathrm{pH}<7$
Neutral $=\mathrm{pH} 7$
Alkaline $=\mathrm{pH}>7$

Acids react with metals, alkalis and carbonates to form a salt and either hydrogen, water or water and carbon dioxide. Each acid forms a different salt.
acid + metal \rightarrow salt + hydrogen
hydrochloric acid + zinc \rightarrow zinc chloride + hydrogen

$$
2 \mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

$$
\begin{gathered}
\text { acid }+ \text { alkali } \rightarrow \text { salt }+ \text { water } \\
\hline \text { nitric acid }+ \text { sodium hydroxide } \rightarrow \text { sodium nitrate }+ \text { water } \\
\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

acid + carbonate \rightarrow salt + water + carbon dioxide
sulfuric acid + zinc oxide \rightarrow zinc sulfate + water

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{ZnO} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Strong and weak acids

Strong acids are acids that fully ionise in water

$$
\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

Weak acids are acids that partially ionise in water

$$
\mathrm{CH}_{3} \mathrm{OOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{OOO}^{-}
$$

