YEAR 10 - DELVING INTO DATA...
 @uhisto_maths

I What do I need to be able to do?

|
| By the end of this unt you should be abe to:
1- Construct and interpret frequency tables
and polygon two-way tables, line, bar, \& pie charts
I. Find and interpret averages from a list and

a table

1. Construct and interpret time series graphs, stem and leaf diagrams and scatter graphs

Keywords

Population: the whole group that is being studied
I Sample: a selection taken from the population that will let you find out information about the larger group
I Representative: a sample group that accurately represents the population
I Random sample: a group completely chosen by change No predictability to who it will include.
Bias: a buitt-in error that makes all values wrong by a certain amount

- Primary data: data collected from an original source for a purpose.

Seconsdary dataa datat taken from an extemal boation Not colected drectly

1) autier: a value that stands apart from the data set

Two way tables R	Subgroups each have their own heading				
60 people visted the zoo one Saturday moming 26 of them were adults. 13 of the adult's favourte animal was an elephant 24 of the children's favounte animal was an elephant.		adut	Child	Total	
	Elephant	13	24	37	
	Other	13	10	23	
Extract information to input to the two-way table.	Needs subgroup totak			Overall total	

[^0]
Frequency tables and polygons

I The data in a list: $0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2$

> Mean: total number of sibinoss

I Grouped data

x Weight(g)	Frequency	Mid Point	MP \times Freq
$40<x \leq 50$	1	45	45
$50<x \leq 60$	3	65	195
$60<x \leq 70$	5	65	325

The data in a list $45,55,55,55,65,65,65,65,65$

Two way tables R

60 people visted the $z 00$ one Saturday moring 26 of them were adults 13 of the adul's favourte animal was on elephant 24 of the chidren's favourte animal was on elephant

year 10 －delung into data．．．
 ＠uhisto＿maths

What do I need to be able to do？
｜By the end of this unt you should be able to：
1－Construct and interpret frequency tables
and polygon two－way tables，ine，bar，\＆pie I charts
I．Find and interpret averages from a list and
－Construct and interpret time series graphs， stem and leaf diagrams and scatter graphs

Keywords

Population：the whole group that is being studied
Sample：a selection taken from the population that will let you find out information about the larger group
Representative：a sample group that accurately represents the population
I Random sample：a group completely chosen by change．No predictability to who it will include．
Bias：a buit－in error that makes all values wrong by a certain amount
Primary data：data collected from an original source for a purpose．
Secondary data：data taken from an external location Not colected directly
I Outier：a vave that stanos apart from the data set

IStem and leaf a nay to reperesent dita a and se to form wereraes

This stem and leaf diagram shows the age of people in a line at the supermarket．

Draw and interpret a scatter graph．

Age of Car（Years）	2	4	6	8	10
Value of Car（£s）	750	6250	4000	3500	2500

1．This data may not be given in size order
－The data forms information pairs for the scatter graph

The line of best fit R

I The Line of best fit is used to make estimates about the information in your scatter graph

Things to know

The line of best fit DOES NOT need to go through the origin（The point the axes cross）
－There should be approximately the same number of points above and below the ine It may not go through any points）
－The ine extends across the whole graph

It is only an estimate
because the line is
designed to be an average
representation of the data
It is always a straight line．

Using a lime of best fit ©

Interpolation is using the line of best fit to estimate values inside our data point．
eg 40 hours revising predicts a percentage of 45

Extrapolation is where we use our line of best fit to predict information outside of our data ＊＊This is not always useful－in this example you cannot score more that 100% So revising for longer can not be estimated＊＊

This point is an＂outier＂

It is an outlier because it doesn＇t fit this model and stands apart from the data

YEAR 10 - USING NUMBER...
 @uhisto_maths
 Non-calculator methods

YEAR 10 - USING NUMBER Types of number ε sequences
 @whisto_maths

Mutiples The "times tabe" of a given number

Keywords

I Factor: numbers we multiply together to make another number
I Multipl: the result of mutipling a number by an integer
HCF: highest common factor. The biggest factor that numbers share.
LCM: bwest common mutiple The first multiple numbers share
arithmetic: a sequence where the ifference between the terms is constant
Geometric: a sequence where each term is found by multipling the previous one by a fued nonzero number
Sequence: tems or numbers put in a pre-decided odder
I

Prime numbers

Finding the HCF and LCM
HCF - Highest common factor

$$
\text { HCF of } 18 \text { and } 30
$$

$1,2,3,6,9,18$
$1,2,3,5,6,10,15,30$

The first time their multiples match


```
eg60 30\times2 2 3 3 5 5 <2
    150 30\times5 2 < 3 5 5 < 5
```


I arithmetic/Geometric sequences

arithmetic Sequences change by a common difference. This is found by addition or subtraction between terms

Geometric Sequences change by a common ratio. This I is found my mutipication/ division between terms.

Term to term rule - how you get from one term (number in the sequence) to the next term

Position to term rule - take the rule and substitute in a position to find a term. Eg Mutiply the position number by 3 and then add 2
iother sequereses
$==$
II Fib
||

IF Finding the nth term

\square

verr 10 - ISIMG wiver...

@uhhisto maths

What do I need to be able to do?
 | By the end of this unit you should be able to:
 1- Identify square and cube numbers
 1-Calculate higher powers and roots
 I - Understand powers of 10 and standard form
 I Know the addition and subbraction rule for indices
 - Understand power zero and negative indices
 - Calculate with numbers in standard form

Keywords

Standard (index) Form: a system of writing very big or very small numbers
I Commutative: an operation is commutative if changing the order does not change the result.
I Base: The number that gets mutipied by a power
I Power: The exponent - or the number that tells you how many times to use the number in mutiplication Exponent: The power - or the number that tells you how many times to use the number in mutipication Indices: The power or the exponent.
Negative: a value below zero.
Coefficient: The number used to multiply a variable

[^0]: II Draw and interpret Pie Charts R

 | Type of pet | Dog | Cot | Hamster |
 | :--- | :--- | :--- | :--- | :--- |\quad| There were 60 people asked in this survey |
 | :--- |
 | Freevency |
 | 32 |

 Comparing Pie Charts: represents dogs $\frac{32}{60} \times 360=192^{\circ} \quad \begin{array}{r}\text { Use a protractor to draw } \quad \begin{array}{l}\text { YEED the overall } \\ \text { frequency to make any }\end{array}\end{array}$

 Ths is 192°

 averaces from lits B

 The Mean
 a measure of average to find the central tendency.. a typical value that represents the data
 $24,8,4,11,8$,

 Find the sum of the data (add the values) 55
 Divide the overall total by how many pieces of data you have
 $55 \div 5$
 Mean $=11$

 The Mode (The modal value)
 This is the number $O R$ the item that occurs the most it does not have to be numerical

 ## The Median

 The vave in the center in the modde) of the data

 ## 24, 8, 4, 11, 8,

 ## 24, 8, 4, II, 8,

 This can still be easier if it the data is ordered first

 Put the data in order $\quad 4,8,8,11,24$
 Find the value in the midolle $4,8,8,11,24$
 Median $=8$

 Mode $=8$

 NOTE:IF there s no singte midde
 vate find the mean of the two numbers eft

 For Grouped Data
 The modal group - which group has the highest frequency

