

What do I need to be able to do？
By the end of this unit you should be able to：
－Generate a sequence from term to term or postion to term rules
－Recognise arthmetic sequences and find the nth term
－Recognise geometric sequences and other sequences that arise
1 I $\overline{\text { Keywords }}$
I
I Sequence：items or numbers put in a pre－decided order
I
I Term：a single number or variable
I Position：the place something is located
I I Linear：the difference between terms increases or decreases（＋or－）by a constant value each time
I I Non－inear：the difference between terms increases or decreases in different amounts，or by x or \div
II
I Difference：the gap between two terms
I arithmetic：a sequence where the difference between the terms is constant
I Geometric：a sequence where each term is found by muttiplyng the previous one by a fixed non zero I I number

Keywords
I I Sequence：tems or numbers put in a pre－decided order
Term：a single number or variable
Position：the place something is located
I I Linear：the difference between terms increases or decreases（＋or－）by a constant value each time
I I Non－Iinear：the difference between terms increases or decreases in different amounts，or by x or \div
1 Difference：the gap between two terms
1）arithmetic：a sequence where the difference between the terms is constant
I I Geometric：a sequence where each term is found by multiplying the previous one by a fixed non zero

ᄂニニニニニニニニニニニニニコ느＝＝＝＝＝＝

Linear and Non Linear Sequences

Linear Sequences－increase by addition or subtraction and the same amount each time ｜Non－linear Sequences－do not increase by a constant amount－quadratic，geometric I and Fibonacci．
I－Do not plot as straight lines when modelled graphically
｜－The differences between terms can be found by addition，subtraction，muttiplication or division．

Fibonacci Sequence－look out for this type of sequence

Each term is the sum of the previous two terms．

Sequences from algebraic rules This is substitution！

This will be linear－note the single power of n The values increase at a constant rate

$$
2 n-5 \longrightarrow
$$

Substitute the number of the term you are looking for
eg
pt term $=2(1)-5=-3$
$2^{\text {nd }}$ term $=2(2)-5=-1$
$100^{\text {th }}$ term $=2(100)-5=195$
Checking for a term in a sequence form an equation
is 201 in the sequence $3 n-4$ ？
in place of＇n＇
$3 n^{2}+7$
This is not linear as there is a power for n

Solving this will find the position of the term in the sequence I ONLY an integer solution can be in the sequence I

is linear－as seen in the graph

II Complex algebraic rules Misconceptions and comparisons

Finding the algebraic rule
times table

This has the same constant difference－but is 3 more than the original sequence

$$
4 n+3
$$

yeAr 8 - AlgeBRalc techniQues...
@whisto_maths

Indices

What do I need to be able

 to do?By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Mutiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

Keynords

Base: The number that gets mutiplied by a power
Power: The exponent - or the number that tells you how many times to use the number in multiplication
Exponent: The power - or the number that tells you how many times to use the number in mutipication
I Indices: The power or the exponent.
I Coeffcient: The number used to mutiply a variable
Simpify: To reduce a power to its lowest term
Product: Mutiply

Iadodion Subtraction with indices

Divide expressions with indices

Cross cancelling factors shows cancels the expression

This expression cannot be divided (cancelled down) because there are no common factors or similar terms

Mutiply expressions with indices

	$4 b \times 3 a$
\equiv	$5 t \times 9 t$
\equiv	$5 \times 3 \times 3 \times a$
\equiv	$\equiv 5 \times t \times 9 \times t$
$\equiv 12 a b$	$\equiv 5 \times 9 \times t \times t$

$2 b^{4} \times 3 b^{2}$
$\equiv 2 \times b \times b \times b \times b \times 3 \times b \times b$
$\equiv 2 \times 3 \times b \times b \times b \times b \times b \times b$
$\equiv 6 b^{6}$

here are often misconceptions with this calculation but break down
the powers

Oadtion Subtraction laws for indices
$3^{5} \times 3^{2}$

$1=(3 \times 3 \times 3 \times 3 \times 3) \times(3 \times 3)$
I The base number is all the same so the terms
can be simplified

addition law for indices

$a^{m} \times a^{n}=a^{m+n}$

$$
3^{5} \div 3^{2} \longrightarrow 3^{3}
$$

Subtraction law for indices

$$
a^{m} \div a^{n}=a^{m-n}
$$

YEAR 8 - DEVELOPING NUMBER.

What do I need to be able to do?
 By the end of this unit you should be able to:
 - Convert between FDP less than and more than 100
 - Increase or decrease using mutipiers
 - Express an amount as a percentage
 - Find percentage change
 $=======$ Convert FDP
 U Using a calculator This will give you the answer in the simplest form
 Using a calculator This will give you the answer in the simplest form

 Convert FDP < and > 100%

 100 hundreaths 10 tenths 100%
 140 hundredths
 14 tenths
 $=7$ "tenths"
 Convert to a decimal

Keywords

Percent: parts per 100 - written using the \% symbol

Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals.
Fraction: a fraction represents how many parts of a whole value you have.
Equivalent: of equal valve.
Reduce: to make smaller in value
Growth: to increase/ to grow.
Integer: whole number, can be positive, negative or zero.
Invest: use money with the goal of it increasing in value over time (ussally in a bank).

Fraction/ Percentage of amount

$\begin{array}{rl}£ 36 \\ \text { Remember } & 10 \% \text { of } £ 60 \\ \frac{3}{5}=60 \% & 50 \% \text { of } £ 60 \\ =£ 6\end{array} \quad \quad \quad \begin{gathered}\text { Remember }\end{gathered} \quad \begin{gathered}\frac{3}{5}=60 \%=0.6\end{gathered}$
60% of $£ 60$
$=0.6 \times 60$
$=£ 36$

Percentage decreass: Mütipiers

11

Increase by 12%

Mutipier

Express as a \% - Calculator
$\left.\left.\begin{array}{c}7 \text { per every } 10 \text { are orangee } \\ \frac{7}{10}\end{array}\right] \begin{array}{c}\text { This means that } 70 \text { per every } 100 \\ \text { are orange } \\ \frac{70}{100}\end{array}\right]$

Standard Form

\section*{What do I need to be able to do?
 By the end of this unit you should be able to:
 - Write numbers in standard form and as ordinary numbers
 - Order numbers in standard form
 I - add/ Subtract with standard from
 I Mutiply/ Divide with standard form
 I - Use a calculator with standard form
 Postive poneres of 10
 I billion - 1000000000
 $10 \times 10 \times 10=10^{9}$
 | addition rule for indices $10^{a} \times 10^{b}=10^{a b b}$ |
| :---: |
| Subtraction rule for indices $10^{a}-10^{b}=10^{a-b}$ |}

Keywords

Standard (index) Form: A system of writing very big or very small numbers
Commutative: an operation is commutative if changing the order does not change the result.
I Base: The number that gets mutipied by a power
I Power: The exponent - or the number that tells you how many times to use the number in mutipication I Exponent: The power - or the number that tells you how many times to use the number in multipication Indices: The power or the exponent.
Negative: a value below zero.

Numbers between 0 and

0.05.4		- $\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
$I=5.4 \times 10^{-2}$	10^{0}	- ${ }^{10-1}$	10^{-2}	10^{-3}
\|	0	- 0	5	4

A negative power does not mean a negative
answer - it means a number closer to 0
i| Standard form with numbers >1 I Negative powers of $\overline{10}$

$\begin{aligned} & \text { I any number } \\ & \text { i between land } \\ & \text { I kssthan } 10 \rightarrow A \times 10^{n} \rightarrow \text { any integer } \\ & \text { il } \\ & \text { II Example } \\ & \text { il } \text { Non-example } \end{aligned}$			$\begin{aligned} & \mid l \\ & \|l\| 001 \\ & \left\|\left\lvert\, 1 \times \frac{1}{1000}\right.\right. \\ & \left\|\mid \times 10^{-3}\right. \end{aligned}{ }^{1}$		
$\begin{aligned} & =3.2 \times 10^{4} \\ & -\quad 11=3.2 \times 10 \times 10 \times 10 \times 10 \end{aligned}$				$\begin{aligned} & \text { eponeren } \\ & \text { valas } \end{aligned}$	
$\\|=32000$					
II Order numbers in standard form			10^{2}		
6.4×10^{-2}	2.4×10^{2}	3.3×10^{0}			
0.064	240				

Mental calculations

I Muttiplication and division $\frac{1.5 \times 10^{5}}{0.3 \times 10^{3}}$ Dusion questions
 $\left.(1.5) \times 10^{5}\right) \div(0.3) \times 10^{3} 1$
 $15-0.3 \times 10^{5}-10^{3}$

YEAR \& - DEVELOPING NUMBER... Number Sense

i What do I need to be able to do?
 By the end of this unit you should be able to:
 - Round numbers to powers of 10 and 1 sf
 - Round numbers to any dp
 - Estimate solutions
 I - Calculate using order of operations
 - Calculate with money units of measurement and time
 Keywords
 Significant: Place value of importance
 I Round: Making a number simpler but keeping its value close to what it was.
 I Decimal: Place holders after the decimal point.
 I Overestimate: Rounding up - gives a solution higher than the actual valve
 Underestimate: Rounding down - gives a solution lower than the actual valve.
 Metric: a sustem of measurement.
 | Balance: The amount of money in a bank account
 I Deposit: Putting money into a bank account
 $\stackrel{\text { measurement and time }}{ }=================$ Round to powers of 10 and I sig figure
 If the number is hafway between we "round up"
 5495 to the nearest 1000
 5475 to the nearest 100
 5475 to the nearest 10
 5470 个

370 to I significant figure is 400 37 to I significant figure is 40 3.7 to I significant figure is 4 0.37 to I significant figure is 0.4 0.00037 to I significant figure is 0.0004

Round to decimal places 2.46192
ITo Idp" - to one number after the decimal
I "To 2 dpp " to two numbers after the decimal
2.46192 (to ldp) - s this closer to 24 or 25
$24>2$

Order of operations

 Brackets operations in brackets are cataulated first I Other operations e e powers, roots,
Multiplication/Division

| They are carried out in the order from left to right in the | question
Oddition/ Subtraction
They are carried out in the order from left to right in the question

II Calculations with money
Metric measures of length
kilo $=1000 \times$ meter Centi $-\frac{1}{100} \times$ meter

II Time and the calendar
1

I Year- the amount of time it takes Earth to go around the sun 365 (and a quarter) days Leap Year - 366 days levery
 II Using a calculator - ensure you are working in the correct unts.
$£ 130+50 \mathrm{p}=130+50 \quad$ (n pence)
$=130+0.50$ (in pouinds)

2 dp

It is good to check all calculations with an estimate in all aspects of maths - it heps you identify calculation errors.

12 Months $=$ one year $=52$ weeks 31 days - Jan, March, May, July aug. Oct, Dec
30 days - April June, Sept, Nov
28 days - Feb (29 leap year)
1 week - 7 days
Monday, Tuesday, Wednesday,
Thursday Friday Saturday Sunday

1day-24 hours
Ihour - 60 minutes
1 minute - 60 seconds

> Use a number line for time calculations!

