YEAR 8 - ALGEBRAIC TECHNIQUES... <u>@whisto_maths</u> Brackets, Equations & Inequalities

3x3+2= || √

10 x 3 + 2 = 32 V

e.g. area of a rectangle $Q = b \times h$

The biggest the value can be is 18

YEAR 8 - ALGEBRAIC TECHNIQUES...

@whisto_maths	Sequences
What do I need to be able to do? By the end of this unit you should be able to: • Generate a sequence from term to term or position to term rules • Recognise arithmetic sequences and find the nth term • Recognise geometric sequences and find other sequences that arise	s put in a pre-decided order ariable ig is located een terms increases or decreases (+ or -) by a constant value each time between terms increases or decreases in different amounts, or by x or ÷ in two terms are the difference between the terms is constant are each term is found by multiplying the previous one by a fixed non zero
Linear and Non Linear Sequences Linear Sequences – increase by addition or subtraction and the same amount each time Non-Inear Sequences – do not increase by a constant amount – quadratic, geometric and Fibonacci • Do not plot as straight lines when modelled graphically • The differences between terms can be found by addition, subtraction, multiplication or division Fibonacci Sequence – look out for this type of sequence 0 2 3 5 8 Each term is the sum of the previous two terms Each term is the sum of the previous two terms Sequences from algebraic rules 3n ² + 7	Sequence in a table and graphically Position: the place in the sequence
This will be linear - note the single This is not linear as there is a power of n. The values increase at a power for n constant rate $2n - 5 \longrightarrow$ Substitute the number of the term you are looking for in place of n' eg If term = 2 (1) - 5 = -3 2 nd term = 2 (2) - 5 = -1 100 th term = 2 (2) - 5 = -1 100 th term = 2 (100) - 5 = 195 Checking for a term in a sequence Is 201 in the sequence $3n - 47$ Cligebraic rule Solving this will find the position of the term in the sequence ONLY an integer solution can be in the sequence	$\begin{array}{c} \underline{Complex \ algebraic \ rules} \\ \hline 2n^2 \\ (2n)^2 \\ \hline 2 \ times \ whatever \ n \ squared \ is \\ eg \\ pt \ term \ = \ 2x \ p^2 - 2 \\ 2^{st} \ term \ = \ 2x \ p^2 - 2 \\ 2^{st} \ term \ = \ 2x \ p^2 - 2 \\ 100^{th} \ term \ = \ 2x \ 100^2 - 2000 \\ \hline n \ (n \ + \ 5) \end{array}$
H Finding the algebraic rule This is the 4 \longrightarrow 4, 8, 12, 16, 20 4n $\downarrow \downarrow \downarrow$ 7, 11, 15, 19, 22 \longleftarrow This has the same difference – but is the original sec 4n + \downarrow	e constant 3 more than quence 3

YEAR 8 - ALGEBRAIC TECHNIQUES...

le alia a

@whisto_maths		IN CICES
What do I need to be able h to do? Ba By the end of this unit you should be able to: Ex • Add/ Subtract expressions with indices Ex • Multiply expressions with indices Co • Divide expressions with indices Co • Know the addition law for indices Sim • Know the subtraction law for indices Print	eywords ise: The number that get wer: The exponent — or ponent: The power — or lices: The power or the e efficient: The number use nplify: To reduce a power oduct: Multiply	is multiplied by a power the number that tells you how many times to use the number in multiplication the number that tells you how many times to use the number in multiplication exponent. ed to multiply a variable r to its lowest term
Addition/Subtraction with indices	 	Multiply expressions with indices
Coefficient Power $5x^2 + 4x^4$ Term Term Expression Only similar terms can be sim	Each square represents x ² and each cube represents x ⁴	$ \begin{array}{cccc} $
$5x^{2} + 2x^{2} \longrightarrow $	• 7x ²	$ \begin{array}{c} 2b^4 \times 3b^2 \\ \equiv 2 \times b \times b \times b \times b \times 3 \times b \times b \\ \equiv 2 \times 3 \times b \\ $
$5x^2 + 6x^4 - 3x^2 + x^4 \longrightarrow$	$2x^2 + 7x^4$	$\frac{\text{Oddition/ Subtraction laws for indices}}{3^5 \times 3^2} \longrightarrow 3^7$ = (3 × 3 × 3 × 3 × 3) × (3 × 3)
$\begin{array}{c} \underline{\text{Divide expressions with indices}}\\ \underline{24}\\ 36 \end{array} \xrightarrow{\underline{\lambda} \times \underline{\lambda} \times 2 \times \underline{3}}\\ \underline{\lambda} \times \underline{3} \times 2 \times \underline{3} \end{array}$	$\rightarrow \frac{2}{3}$	The base number is all the same so the terms can be simplified Oddition law for indices $a m \times a n = a m + n$
$\frac{5a^{3}b^{2}}{15ab^{6}} \rightarrow \frac{5xaxaxaxbxb}{3x5xaxbxbxbxbxbxbxbxb}$	$\frac{a^2}{x b x b} \rightarrow \frac{a^2}{3b^4}$	$3^{5} \div 3^{2} \longrightarrow 3^{3}$ $3^{x} 3^{x} 3^{x$
Cross cancelling factors shows cancels th $\frac{23 \text{ a}^7 \text{ y}^2}{5 \text{ d} \text{ b}^6}$ This expression cannot be divided (cancelled down) because there are no common factors or similar terms	e expression	3° 3° Subtraction law for indices $a^{m} \div a^{n} = a^{m-n}$

YEAR & - DEVELOPING NUMBER Fractions & Percentages @whisto maths

Keywords What do I need to be able Percent parts per 100 - written using the / symbol to do? Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals. Bu the end of this unit you should be able to: Fraction: a fraction represents how many parts of a whole value you have. Convert between FDP less than and Equivalent: of equal value. more than 100. Reduce: to make smaller in value. Increase or decrease using multipliers. Growth: to increase / to arow. Express an amount as a percentage. Integer: whole number, can be positive, negative or zero. Find percentage change. Invest: use money with the goal of it increasing in value over time (usually in a bank). _____ ___ Fraction/Percentage of amount Convert FDP R R 70 out of 100 70 hundredths This also 70 Find $\frac{3}{5}$ of £60 ER ER ER ER ER squares = 70% means 100 70 "hundredths" 70 - 100 = 7 "tenths" Using a Remember 0.7 Remember calculator Be careful of recurring decimals $10\% \text{ of } \pounds 60 = \pounds 6$ $\frac{3}{1} = 60 \times = 0.6$ <u>3</u> = 60% = 0.33333333 50% of £60 = £30 e.g 11 60% of £60 = 0.3 60% of £60 = £36 11 SI D Convert to a decimal = 0.6 x 60 The dot above the 3 11 This will give you the answer × 100 converts = £.36 in the simplest form to a percentage Percentage decrease: Multipliers Percentage increase: Multipliers Convert FDP < and > 100% 100% 12% 100% 40 hundredths 100 hundredths 4 tenths 10 tenths 40% 100% Decrease by 58% Increase by 12% 140 hundredths 14 tenths 100%+40% |00|' - 58|' = 42|'140% |00'/.+|2'/.=|12'/.Multiplier Multiplier 1+0.40 More than 100 - 0.58 = 0.42 4 Less than |00+0|2=|12= 140 ii Express as a 🛛 - Calculator Express as a / - Non-calculator Percent – per hundred Ш This means that 70 per every 100 7 per every 10 are orange Rosie 70% are orange 70. <u>7</u>. 43.3333.. 100 10 13. 30 43% 30 54 per every 100 shaded 27 per every 50 shaded 54% 54 This the same as ш 100 Can't use equivalence 50 13 - 30 Decimal percentages easily to find 'per Ш are still a percentage Denominator 100 Equivalent fractions hundre.d Percentage change Choose appropriate method bought a house for £180,000, bought a phone for £200. later sold it for £216,000. Q year later sold it for £ 1,25. The language and wording of 100% the question is the key 100% All values of change £180,000 compare to the £200 ORIGINOL value f 125 Percentage profit Have you represented the question in a Percentage loss ★<u>36000</u> × 100 =20%

Money made (profit value)

180000

bar model?

Can you use a calculator?

Difference in value ____ × 100

Original value

75

200

× 100 = 37.5%

YEAR 8 - DEVELOPING NUMBER...

Standard Form

	<u> </u>											
What do I need to be able Keywords												
to do? By the end of this unit • Write numbers in ordinary numbers • Order numbers in s • Odd/ Subtract with • Multiply/ Divide with • Use a calculator with	 Description Descript					rs bt change t use the n use the n	the resu umber ir umber ir	lt. n multiplicat n multiplicat	ion ion			
			<u> </u>	<u>Standard form with numbers > </u>		I Negative powers of 10						
, billion — 1 000 000 000 0 x 10 x 10 x 10 x 10 x 1	10 x 10 x 10 x n dices 10ª x	$ 0_{p} = 0_{a+p}$		Ony number between 1 and A X less than 10	10 n Ony integer	0.00 1 1 1 1 1 1	10 10	1 100 • 10	1 10)-	1 100	1 1000	
Subtraction rule for	rindices 10ª	~ 10 ^b = 10 ^{a-b}		l Example	<u>Non-example</u>	 ₁ x 10 ⁻³	0	70 🛉 0		0	I	
Numbers between	1 0 and		 	3.2 x 10 ⁴ 3.2 x 10 x 10 x 10 x 10 x 1 - 3.2000	$\begin{array}{c} (0.8) \times 10^{-4} \\ 5.3 \times 10^{(0)} \end{array}$	Ony the p alway	value to power 0 js = 1		Nego indico	tive powers du ite negative su	o not olutions	
0.05.4 = 5.4 x 10 ⁻²	\bullet $\frac{1}{10}$	$\frac{1}{100} \qquad \frac{1}{1000}$	_	Order numbers i	n standard form	102 101		00 • 10-1	10-	а <u>10</u> -3	10-4	
0	• 10 ⁻¹ • 0	10 ⁻² 10 ⁻³ 5 4		 6.4 x 10 ⁻² 2	.4 x 10 ² 3.3 x 10 ⁰	l.3 x	10-1	Look a will the	t the powe number be	r first . = > or < thar	n l	
0 negative power answer — it means	does not m : a number 	nean a negative closer to 0		l 0.064	240 I	0.13		Use a p number	place value rs for orde	grid to comp ring	are the	
Mental calculation	<u>S</u>		·	– – – – – – – – 0⁵ x3	<u>Addition and Subt</u>	<u>raction</u>	Tip : C st <i>a</i> nd	onvert into oro ard from at th	dinary num ne end	bers first and	back to	
$6.4 \times 10^2 \times 10^3$ 6.4×10^5 6.4×10^5	n standard ro	= 2 ces rule = 2. <u>= 2.</u>	24 x .4 x .4 x	10^5 Not in Standard Form $0^1 \times 10^5$ Use addition for 10^6 indices rule	 <u>Method </u> = 600000 + 800000 = 1400000 = 1.4 x 10 ⁵	6 x 10 ⁵	+ 8 x	105 This is not the	/	<u>Method 2</u> (6 + 8) x 10 ⁵ 14 x 10 ⁵ 1.4 x 10 ¹ x 10))5	
$(2 \times 10^{-3})^{-4}$ Divide = $(2 \div 4) \times 10^{-3}$	$2 \times 10^3 + 4$ $(2 \div 4) \times 10^3$ Divide the values <u>Remember th</u>		e layout	for standard form	More robust method		t	inal answer	-	<u>= 1.4 x 10⁵</u>		
<u>• 0.5 x 10³</u> between 1 and less than 10		► A >	(10 n Ciny integer	Less room for miscorcept Easier to do cabulations negative indices Can use for different por	tions with vers			Only works if the powers are the same				
<u>Multiplication and</u> 1.5 x 10 ⁵ 0.3 x 10 ³	division a questions bk like this	For multiplication values for A se	n and d and th eparate	ivision you can look at the e powers of 10 as two calculations	Using a calculator U hput 14 and press 10 Th Press 12	l4 x 10 nen press 5 (fo	⁵ X	3.9 x 10 ³ er)	Use a quest accur	a calculator to ion to a suital acy e solution	work out this de degree of	
$(1.5)_{X} = 10^{5}$) $\div (0.3)_{X}$	103)	Revisit addition a	nd subt	raction laws for indices –	hput 3.9 and press (x10*) T Press (==) 	hen press 3 (fo	or the pow	ier)		1		
(15 + 0.3) x 10 ⁵ +	10 ³	they are n	needed f	For the calculations	To put into standard form a	nd a suitable de	aree of a	caraen	Click ca	iculator for vic	leo tutorial	
$= 5 \times 10^{2}$	additio Ci ^m Xa	on law for indices A ⁿ = A ^{m + n}		Subtraction law for indices $\lambda^{m} \div A^{n} = A^{m-n}$	rindes a m - n I I I I I I I I I							

YEAR 8 — DEVELOPING NUMBER... Number Sense.

What do I need to be able to do? By the end of this unit you should be able to: • Round numbers to powers of 10 and 1 sf • Round numbers to any dp • Estimate solutions • Calculate using order of operations • Calculate with money, units of measurement and time	Keywords Significant: Place value of Round: Making a number Decimal: Place holders aft Overestimate: Rounding u Underestimate: Rounding Metric: A system of meas Balance: The amount of r Deposit: Putting money in	importance simpler but keeping its vo ter the decimal point. p — gives a solution high down — gives a solution l surement. noney in a bank account.	ilue close to what it was er than the actual value ower than the actual va	ilue.
Round to powers of 10 and 1 sig. fig. 5495 to the nearest 1000 5475 5000 1 6000 5400	UTE R If the number is 1 i to the nearest 100	halfway between we " round u 5475 to the nea 5470	p" 370 to 37 to 1 rest 10 3.7 to 1 0.37 to 0.0003	l significant figure is 400 significant figure is 40 significant figure is 4 l significant figure is 0.4 7 to 1 significant figure is 0.0004 Round to the first non-zero number
Round to decimal places 2.46 192 "To $ldp' - to one number after the decimal "To 2dp' - to two numbers after the decimal 2.46 192 (to ldp) - is this closer to 24 or 25242.46 192 (to l2dp) - is this closer to 246 or 247246247$	Focus on the numbers after the decimal point 2.4 6 92 This shows the number is closer to 25 2.46 92 This shows the number is closer to 246	Estimate the cak 4.2 + 6.7 \approx 4. + 21.4 x 3.1 \approx 20 2 It is good to check a	Culation Round to 7 \approx II This is an output The equal sign changes to Image: to the equal sign changes to the equal sin the equal sin the equal sign changes to the equal sign changes t	D I significant figure to estimate erestimate because the 6.7 was rounded up more show it is an estimation serestimate because both values were rounded down ter in all aspects of maths — it n errors.
Order of operations Brackets Operations in brackets are calculated first Other operations e.g. powers, roots, Multiplication/ Division They are carried out in the order from left to right in the question They are carried out in the order from left to right in the question	Calculations with ma Debit - You have £0 or Credit - You have less Using a calculator - correct units £ 1.30 + 50p = 1.31 = 1.3	DNEY r more in an account than £0 in an account - ensure you are working in t 0 + 50 (in pence) 0 + 050 (in pouinds)	Money calculations are to 2dp :he £1 = 100p	
Units are important: Useful Conversions		$ \begin{array}{c} $	km g × 1000	kg $m \xrightarrow{\div 1000} L$
$\frac{\text{Metric measures of length}}{\text{Kib} = 1000 \text{ x meter}} \text{ Centi } -\frac{1}{100} \text{ x meter}$ $\frac{\text{Mill} - \frac{1}{1000} \text{ x meter}}{\frac{1}{1000} \text{ x meter}}$ $\frac{\text{Units of weight/ capacity}}{\text{Weight} = g_{1} \text{ kg_ t}}$ $\text{Weight = g_{2} \text{ kg_ t}}$	Time and the cale <u>I Year</u> - the amou takes Earth to go sun 365 (and a qu Leap Year - 366 <u>Onalogue Clock</u>	ndar int of time it around the iarter) days days (every 4 years) Thursd 12-hour clock • Use am (morning) ar • Only use hour times	n <u>ths</u> = one year = 52 weeks ys — Jan, March, May, July ict, Dec ys — Opril, June, Sept, Nov ys — Feb (29 leap year) <u>ic</u> — 7 days y, Tuesday, Wednesday, iay, Friday, Saturday, Sunday <u>Diajital Clock</u> nd pm (afternoon) up to 12	<u>I day</u> - 24 hours <u>I hour</u> - 60 minutes <u>I minute</u> - 60 seconds Use a number line for time calculations! <u>(24-hour times)</u> <u>24-hour clock</u> 0-11 (morning hours) 1,2-23 (afternoon hours)