Year 11 - Reasoníng...

 Multiplicative reasoning

Inverse Proportion as one varonbe is mutipled by a scate foctor the other is diveded by the same scate foctor

```
Examples of inversely proportional relationships
Time taken to fill a pool and the number of taps running
```

Time taken to paint a room and the number of workers
T is inversely proportional to G. When $T=2$ then $G=20$

Direct and inverse proportion equations
g is directly proportional to h.
When $g=120, h=40$

1) Work out the constant of p
$g=k h$
$120=40 k$
$k=\frac{120}{40}=3$
$g=3 h$
2) Work out the value of g when $h=25$

$$
\begin{gathered}
g=3 h \\
g=3 \times 25 \\
\boldsymbol{g}=\mathbf{7 5}
\end{gathered}
$$

3) Work out the value of h when $g=25$

$$
g=3 h
$$

$$
25=3 h
$$

$$
h=\frac{25}{3}
$$

g is inversely proportional to h. When $g=12, h=4$

1) Work out the constant of proportionality

g	$=\frac{k}{h}$
12	$=\frac{k}{4}$
$k=12 \times 4=48$	
g	$=\frac{48}{h}$

2) Work out the value of g when $h=3$

$$
\begin{aligned}
& g=\frac{48}{h} \\
& g=\frac{48}{3} \\
& g=16
\end{aligned}
$$

3) Work out the value of h when $g=6$

g	$=\frac{48}{h}$
6	$=\frac{48}{h}$
h	$=\frac{48}{6}$
h	$=8$

Year 11 - Reasoning...

What do I need to be able to do?

By the end of this unit you should be able to:

- Understand angles facts
- Calculate exterior/interior angles of polygons
- Proving geometric facts
- Problem solving with angles
- Circle Theorems (H)

attemate angles

I Solving angle problems
$\xrightarrow{\text { angles on a straight Line }}$

Link angle facts to algebra Form an equation

Triangles
Sum of angles is 180°
Isosceles have the same
base angles

Keywords

Angle: the amount of turn between two lines around their common point
Parallel: straight lines always the same distance apart and never touch. They have the same gradient
Bearing: the angle in degrees measured clockwise from North. Given as 3 digits
Interior angles: angles inside the shape
Exterior angles: angles outside the shape on a straight line. Int +ext = 180
Polygon: A 2D shape made with straight lines
Regular: when a shape is regular all sides are the same length and all angles are the same
Irregular: shape with sides of different lengths and angles of different sizes
Sum: total, add all the angles together

Co-interior angles

Os angles on á line aid up to 180° co-interior angles can
I also be calculated from applying alternate/ corresponding rules first

The angle in a semi-circle is 90°

Angles in the same segment are equal

The angle in the centre is double the angle at the circumference

Opposite angles in a cyclic quadrilateral add up to 180°

A radius and a tangent meet at 90°

Tangents to a point are the same length

interior Angles

State the reason
The sum of angles on a
straight line is 180°

Solve

$$
\begin{aligned}
2 x+4 x & =180^{\circ} \\
6 x & =180^{\circ} \\
x & =30^{\circ}
\end{aligned}
$$

The angles enclosed by the polygon
(number of sides - 2) $\times 180$

The Alternate Segment Theorem Theorem

The perpendicular bisector of a chord is a radius

I Interior and exterior angles The sum of exterior angles in any polygon is 360°

I The size of each exterior angle
in a regular polygon is
$360^{\circ} \div$ number of sides
Interior + exterior angle $=180^{\circ}$

Year 11 - Reasoning... Algebraic reasoning

What do I need to be able to do?
 By the end of this unit you should be able to:
 - Simplify expressions
 - $\quad \mathbf{N}^{\text {th }}$ term for linear sequences
 - $\mathbf{N}^{\text {th }}$ term for quadratic sequences
 - Solve simultaneous equations

Keywords

Expression:
Sequence: items or numbers put in a pre-decided order
Term: a single number or variable
Position: the place something is located
Linear: the difference between terms increases/decreases by a constant each time
Non-Linear: the difference between terms increases/decreases in different amounts
Quadratic: where the highest power of the variable is squared $\left(x^{2}\right)$
Difference:
Co-efficient: number in front of the variable

Linear and Non Linear Sequences

| Linear Sequences - increase by addition or subtraction and the same amount each time I Non-inear Sequences - do not increase by a constant amount - quadratic, geometric I and Fibonacci
I Do not plot as straight lines when modelled graphically
1- The differences between terms can be found by addition, subtraction, multiplication or division
Fibonacci Sequence - boo out for this type of sequence

$$
\begin{aligned}
\text { (1) }\binom{2 a}{2 a}+c & =34.45 \\
2 a)+3 c & =52.35 \\
2 c & =17.90 \\
c & =8.95
\end{aligned}
$$

2. With one quadratic

$$
\begin{aligned}
& y=x^{2} \\
& y=x+2 \\
& x^{2}=x+2 \\
& \begin{array}{|c|}
\hline y \\
\hline x^{2} \\
\hline
\end{array} \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x=2, x=-1 \\
& y=x^{2} \\
& y=(2)^{2} \quad y=(-1)^{2} \\
& y=4 \quad y=1 \\
& x=2 \text { and } y=4 \\
& x=-1 \text { and } y=1
\end{aligned}
$$

Finding the algebraic rule

This is the 4 $\longrightarrow 4,8,12,16,20 \ldots$ times tope

This has the same constant difference - but is 3 more than the original sequence $4 n+3$

Year 11 - Reasoning.
 @whisto_maths

I What do I need to be able to do?
By the end of this unit you should be able to:

- Determine whether ((x)) s a soltion
| - Solve by substituting a known variable
| - Solve by substituting an expression
| - Solve graphically
| - Solve by subtracting/ adding equations
- Solve by adjusting equations

I Form and solve linear simuttaneous
equations

Keywords

Soution: a vave we can put in place of a variable that makes the equation true
I V Variable: a symbol for a number we don't know yet.
I Equation: an equation says that two things are equal - it will have an equals sian $=$
I Substitute: replace a variable with a numerical value
I LCM: lowest common multiple (the first time the times table of two or more numbers match)
I Eliminate: to remove
Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign) Coordinate: a set of values that show an exact postion.
I I Intersection: the point two ines cross or meet.
is (x, y) a solution?
x and y represent values that can be substituted into

Substituting known variables
Stephanie knows the
point $x=4$ lies on that
a line has the equation $3 x+y=14$
$3 x+y=14$ line. Find the value for y.
$x=4$
$3(4)+y=14$
Two different variables, two solutions

Pair of simultaneous equations

Year 11 －Reasoníng．．．

Transforming E constructing

What do I need to be able to do？

I By the end of this unit you should be able to：
I－Draw and measure angles
I－Construct scale drawings
I－Find locus of distance from points，lines，two lines
－Construct perpendiculars from points，ines， angles
－Identify conarvence
I－Identify congrvent triangles

Keywords

Protractor：piece of equipment used to measure and draw angles
Locus：set of points with a common property
Equidistant：the same distance
Discorectangle：（a stadium）－a rectangle with semi circles at either end
Perpendicular：lines that meet at 90°
arc：part of a curve
Bisector：a line that divides something into two equal parts
Congruent：the same shape and size

Draw and measure angles

I Make sure the cross is at the end
I of the line（where you want the ｜angle）

Scale draninos

Locus of a distance from a point
all points are equidistant（the same distance）from the fixed point in the middle．

Equipment needed
The radius is the distance from the fixed point

Locus of a distance from a straight line

Locus equidistant from two points

ニニニニニニニニニニニニニニニニニー

Locus of a distance from two lines

From the angle vertex draw two arcs that cut the lines forming the angle

Keep the compass the same size and use the new arcs as centres to draw intersecting arcs in the middle

Constructing Triangles $\underset{\text { steps }}{\text { Link to }} \rightarrow \mathbb{R}$
Side，angle，angle
Side，angle，Side

Side，Side，Side

1 Construct a perpendicular from

Connecting the arcs makes the bisector

＂1，connvent triandes

```
Side-side-side
```

｜｜All three sides on the triangle are the same size

angle－side－angle

Two angles and the side connecting them are equal in two triangles

Side－angle－side

I Two sides and the angle in－between them are equal in I \｜\｜size on both shapes）
11 Right angle－hypotenuse－side
｜I The triangles both have a right angle，the
I hypotenuse and one side are the same

Year 11 －Listing \＆describing．．． collecting，representing and interpreting
 ＠whisto＿maths

What do I need to be able to do？

I
｜By the end of this unt you should be able to：
1－Construct and interpret frequency tables and poyyon two－way tables，ine，bar，ε pie ！ charts
I．Find and interpret averages from a list and
a table
I－Construct and interpret time series graphs， stem and leaf diagrams and scatter graphs

Keywords

Population：the whole group that is being studied

I Sample：a selection taken from the population that will let you find out information about the larger group
I Representative：a sample group that accurately represents the population
I Random sample：a group completely chosen by change No predictability to who it will include
Bias：a buit－in error that makes all values wrong by a certain amount
Primary data：data collected from an original source for a purpose．
Secondary data：data taken from an external location．Not collected directly． I，Outier：a value that stands apart from the data set
Lーーーーーーーーーーーーー

year 10 －delung into data．．．
 ＠uhisto＿maths

What do I need to be able to do？
｜By the end of this unt you should be able to：
1－Construct and interpret frequency tables
and polygon two－way tables，ine，bar，\＆pie I charts
I．Find and interpret averages from a list and
－Construct and interpret time series graphs， stem and leaf diagrams and scatter graphs

Keywords

Population：the whole group that is being studied
Sample：a selection taken from the population that will let you find out information about the larger group
Representative：a sample group that accurately represents the population
I Random sample：a group completely chosen by change．No predictability to who it will include．
Bias：a buit－in error that makes all values wrong by a certain amount
Primary data：data collected from an original source for a purpose．
Secondary data：data taken from an external location Not colected directly
I Outier：a vave that stanos apart from the data set

IStem and leaf a nay to reperesent dita a and se to form wereraes

This stem and leaf diagram shows the age of people in a line at the supermarket．

Draw and interpret a scatter graph．

Age of Car（Years）	2	4	6	8	10
Value of Car（£s）	750	6250	4000	3500	2500

1．This data may not be given in size order
－The data forms information pairs for the scatter graph

The line of best fit R

I The Line of best fit is used to make estimates about the information in your scatter graph

Things to know

The line of best fit DOES NOT need to go through the origin（The point the axes cross）
－There should be approximately the same number of points above and below the ine It may not go through any points）
－The ine extends across the whole graph

It is only an estimate
because the line is
designed to be an average
representation of the data
It is always a straight line．

Using a lime of best fit ©

Interpolation is using the line of best fit to estimate values inside our data point．
eg 40 hours revising predicts a percentage of 45

Extrapolation is where we use our line of best fit to predict information outside of our data ＊＊This is not always useful－in this example you cannot score more that 100% So revising for longer can not be estimated＊＊

This point is an＂outier＂

It is an outlier because it doesn＇t fit this model and stands apart from the data

Year 11 - Listing \& describing Probability

What do I need to be able to do?
 I
 | By the end of this unit you should be able to:
 1- Odd, Subtract and muttiply fractions
 |- Find probabilities using likely autcomes
 1- Use probability that sums to I
 1. Estimate probabilities
 1. Use Venn diagrams and frequency trees
 - Use sample space diagrams
 - Calculate probability for independent events
 - Use tree diagrams

Keywords

Event: one or more outcomes from an experiment
I Outcome: the result of an experiment
I Intersection: elements (parts) that are common to both sets
I Union: the combination of elements in two sets.
Expected Vave: the value/ outcome that a prediction would suggest you will get
Universal Set: the set that has all the elements
Systematic: ordering vabues or outcomes with a strategy and sequence
Product: the answer when two or more values are multiplied together.

Likeliness of a probability

The more likely an event the further up the probabilty it will be in comparison to another event (t will have a probability closer to I)

Experimental data

Theoretical probability	What we expect to happen					The more trias that are completed the closer experimental probability and theoretical probability become	
Expermental probability							
The probability becomes more accurate with more trials. Theoretical probability is proportional							
Sample space The possbe atcomes from roing a dce							$\underset{\substack{p(\text { Even } \\ \text { number and } \\ \text { tales) }}}{ }=\frac{3}{12}$
	1	2	3	4	5	6	
율 H	IH	$2, \mathrm{H}$	3, H	4,H	5,H	6, H	
这家 T	IT	$2, T$	3,T	4,T	5,T	6,T	

I Independent events

The outcome of two events happening The
outcome of the first event has no bearing on the
outcome of the other

$=P(A) \times \mathrm{P}(B)$

Tree diagram for independent event
sobel has a bag with 3 bue counters and 2 yellow She picks a counter and replaces it before the second pick.

Because they are reploced the second pick has the same probability

Tables, Venn diagrams, Frequency trees

