YEAR 10 - GGOMETRY...

@uhisto_maths

angles and bearings

YEAR 10 －GGOMETRY．．．

＠uhisto＿maths

Working with circles

What do I need to be able to do？
By the end of this unit you should be able
to：
－Recognise and label parts of a circle
－Calculate fractional parts of a circle
－Calculate the length of an arc
－Undilerte the area of a sector
cyinder and spere volume of a cone，
－Understand and use surface area of a
cone，cyinder and sphere
Lニニニニニニニニニニニニニ

Circumference
an arc is a part of the circumference

Keywords

Circumference：the length around the outside of the circle－the perimeter
｜Area：the size of the 2D surface
｜Diameter：the distance from one side of a circle to another through the centre
I Radius：the distance from the centre to the circumference of the circle
I Tangent：a straight line that touches the circumference of a circle
Chord：a line segment connecting two points on the curve
Frustrum：a pyramid or cone with the top cut off
Hemisphere：haff a sphere
｜Surface area：the total area of the surface of a 3D shape
Lector（part of 1 Fractional parts of a circle a acrcle is made up of 360° the circle made from two radil）

The fraction of the circle is as $\frac{\theta}{360}$
θ represents the degrees in the sector

Var 10 - 6 faverix....

@uhisto maths

Vectors

What do I need to be able to do?
By the end of this unit you should be able
to:
Understand and represent vectors

- Use and read vector notation
- Draw and understand vectors multiplied
by a scalar
- Draw and understand addition of
vectors
- Draw and understand addition and
subtraction of vectors

Understand and represent vectors

Vector notation $\overrightarrow{D E}$ is another way to represent the vector joining the point D to the point E

$$
\overrightarrow{D E}=\binom{-3}{-1}
$$

The arrow also indicates the direction from point D to point E
addition of vectors
$\left.\begin{array}{c}\overrightarrow{A B}=\binom{3}{1} \\ =\binom{3}{1}+\left(\begin{array}{c}2 \\ 2 \\ -4\end{array}\right) \\ =\binom{3}{3} \\ 1+-4\end{array}\right)$

Vectors multiplied by a scalar

$\boldsymbol{a}=\binom{-1}{2} \boldsymbol{b}=\binom{2}{-4} \quad \boldsymbol{c}=\binom{1}{-2}$ addition and subtraction of vectors

$$
\begin{gathered}
\boldsymbol{a}=\binom{5}{1} \quad \boldsymbol{b}=\binom{0}{4} \\
\boldsymbol{a}+(-\boldsymbol{b})=\binom{5+-0}{1+}=\binom{5}{-4} \\
\text { The resultant is } \boldsymbol{a}-\boldsymbol{b} \text { because the }
\end{gathered}
$$

The vectors \boldsymbol{a} and \boldsymbol{c} are also parallel a negative scalar causes the vector to reverse direction
$\boldsymbol{b}=-2 \times \boldsymbol{a}=-\mathbf{2 a}$

$$
\boldsymbol{b}=2 \times \boldsymbol{c}=2 \boldsymbol{c}
$$

Multiply \boldsymbol{c} by 2 this becomes \boldsymbol{b}. The two ines are parallel

$$
a=-1 \times c=-c
$$

the vector to reverse direction

$$
b=-2 \times a=-2 \boldsymbol{a}
$$

year 10 - PROPORTION...

@uhisto_maths

What do I need to be able to do?
By the end of this unit you should be able to:

- Compare quantities using ratio
comparisons
- Share in a given ratio
- Lolve Ratio and scales and graphs with currency conversions
- Solve best buy' problems
- Combine ratios

Keywords
Ratio: a statement of how two numbers compare
I Equivalent: of equal value
I Proportion: a statement that links two ratios
II Integer: whole number, can be positive, negative or zero.
I Fraction: represents how many parts of a whole.
Denominator: the number below the ine on a fraction The number represent the total number of parts.
Numerator: the number above the ine on a fraction. The top number. Represents how many parts are taken
Origin: $(0,0)$ on a graph. The point the two axes cross
Gradient: The steepness of a line

YEAR 10 －PROPORTION

＠whisto＿maths
Percentages and interest
What do I need to be able to do？
By the end of this unit you should be able to：
1．Convert and compare FDP
1．Work out percentages of amounts
｜．Exprease／decrease by a given percentage number as a percentage
｜．Calculate simple and compound interest
－Calculate repeated percentage change
－Find the original value
－Solve problems with growth and decay
Lニニニニ

Keywords

Exponent：how many times we use a number in multipication It is written as a power
Compound interest：calculating interest on both the amount plus previous interest
｜Depreciation：a decrease in the value of something over time．
I Growth：where a value increases in proportion to its current value such as doubling
I Decay：the process of reducing an amount by a consistent percentage rate over time
Mutipier：the number yov are mutipling by
Equivalent：of equal value．

Percentage increase／decrease R

Simple and compound interest

| Simple interest |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| James invests |

year 10 - PROPORTION...

@whisto_maths

What do I need to be able to do?
|
| By the end of this unit you should be able to:
1- Odd, Subtract and multiply fractions
1- Find probabilities using likely autcomes
1- Use probability that sums to I

- Estimate probabilities

1. Use Venn diagrams and frequency trees

- Use sample space diagrams
- Calculate probability for independent events
- Use tree diagrams

Keywords

Event: one or more outcomes from an experiment
I Outcome: the result of an experiment
I Intersection: elements (parts) that are common to both sets
I Union: the combination of elements in two sets.
Expected Vave: the vave/ outcome that a prediction would suggest you will get
Universal Set: the set that has all the elements
Systematic: ordering values or outcomes with a strategy and sequence
Product: the answer when two or more values are multiplied together.

add, Subtract and mutiply fractions

Iadtion and Subtraction
$\frac{4}{5}-\frac{2}{3}$
$\frac{12}{15}-\frac{10}{15}=\frac{2}{15}$
Use equivalent fractions to
find a common multipl for
both denominators

Multiplication

Likeliness of a probability

The more likely an event the further up the probability it will be in comparison to another event (It will have a probability closer to I)

Experimental data

Tables, Venn diagrams, Frequency trees

