

Quantitative chemistry

Threshold Concept

To understand that total mass of reactants equals total mass of products

RAM is atomic mass of an element

RFM is the combination of all elements Ar in a compound or Molecule

Work example

Helium (He) Ar=4
Carbon dioxide $=\mathrm{CO}_{2}$
Carbon (C) $=12$ Oxygen (0) $=16$
Mr of $\mathrm{CO}_{2}=12+(16 \times 2)=44$

Keywords

Conservation - the mass of the reactants must equal the mass of the products in a chemical reaction Formula mass - the combined mass numbers of an element or compound Concentration - the amount of substance dissolved in a solution Equation - symbol representation of a chemical reaction Loss - the process of losing something Gain - the process of gaining something

Balancing Equations

As the same number of elements are at the start and the end of reactions. The Equation needs to be balanced.

Conservation of Mass

The reactants mass must always equal the mass of the products
$2 \mathrm{~g}+2 \mathrm{~g} \rightarrow 4 \mathrm{~g}$
We can not destroy atoms.

Moles

Chemical amounts are measured in moles. One mole of a substance contains 6.02×10^{23} particles (Avagadro's number)

Limiting reactions

The reactant that gets used up first in a reaction is called the limiting reactant. This reactant is not in EXCESS

Concentration
Concentration is the amount of substance in a certain volume of .solution (g/dm3)
 Percentage by mass The amount of an element in a compound is called its percentage composition. It can be calculated using the mass of the given element in the compound and the RFM of the Compound.

Mass $\%=\frac{\text { Mass of solute }}{\text { Mass of solution }} \times 100 \%$

Reacting masses

The mass of a product or reactant can be determined from having a balanced symbol equation. Once balanced, the equation tells you how many moles of | each substance react with each other: $\mathrm{Mg}+\mathbf{2 H C l} \rightarrow \mathrm{MgCl}_{\mathbf{2}}+\mathrm{H}_{\mathbf{2}}$ (Balanced)

This equation states that: $1: \mathrm{Mg} 2: \mathrm{HCl}$ to form $1: \mathrm{MgCl}_{2} 1: \mathrm{H}_{2}$
| Using the formula and moles you can use this information to work out how
I much product you will make

Atomic Structure

Threshold Concept

Identify that there are three types of radiation

Keywords

Atom - the smallest particle of a chemical element that can exist Proton-positively charged particle
Neutron-Particle with no charge
Electron-Negatively charged particle
Wave - Energy transfer method

Paper Aluminium Lead

I Nuclear Model

	Irradiation	Contamination
Description	Object ls exposed to rodiotion but does not become rodlooctive	Dbject becamen rodicactive and emits rodiotios
Source	Danger is from rodiation emitted nutsile the object.	Danger from radiation emitted withis the sbject
Prevention	Prevented by using thielding, such os lead clothing	Prevented ly safa handling of sources and oirtight sofety clathing
Couses	Coused by the presence of todiboctive sources outsible the bady	Coused by inhalation or ingestion af radiacctive sources

Half Life

