Inheritance

Threshold Concept

Organisms pass on their DNA in order to survive.

DNA is found in the nucleus of cells and contains all the genetic material to make the organism

Sexual and asexual reproduction

There are two main forms of reproduction: sexual and asexual reproduction. In sexual reproduction, an organism combines the genetic information from each of its parents and is genetically unique. In asexual reproduction, one parent copies itself to form a genetically identical offspring

Genetic cross diagrams Genetic crossing describes breeding two selected individuals so their offspring can be studied to understand how a particular trait is inherited down the generations.

| Keywords

Cell...... The smallest unit that can live on its own and makes up all living organisms

Nucleus The organelle inside cells that contains the cells genetic material

DNA...... The molecule inside cells that contains all the genetic information responsible for the development and function of an organism

Chromosomes...... A structure made up of proteins and DNA organised into genes inside the nucleus of a cell

Gene Genes carry information that determine what characteristics are inherited from an organism's parents

Reproduction The production of offspring

Mitosis / Meiosis

Mitosis is a form of cell division which produces two identical, diploid body cells. Meiosis is a form of cell division which produces four non -identical, haploid sex cells or gametes (sperm and ova in humans

Required Practical

Equations for this topic

Image size = actual size x magnification

Variation

Threshold Concept

All living things need to change to live.

Variation

Individuals in a population are usually similar to each other, but not identical. Some of the variation within a species is genetic, some is environmental—the conditions in which they have developed and some is a

<u>Evolution</u>

Evolution is the change of information over time through natural selection, which may result in the formation of a new species Five main processes that lead to evolution:

- -mutation
- -non-random mating
- -gene flow
- -finite population size (genetic drift)
- -natural selection.

Fossils

A fossil is the preserved remains of a dead organism from millions of years ago. Evidence for early forms of life comes from fossils. By studying fossils, scientists can learn how much (or how little) organisms have changed as life developed on Earth

<u>Keywords</u>

Variation...... any difference between the individuals in a species or groups of organisms of any species

Evolution the change in the characteristics of a species over several generations and relies on the process of natural selection

Adaptation...... the adjustment of organisms to their environment in order to improve their chances at survival in that environment

Natural Selection the process through which populations of living organisms adapt and change

Natural Selection

In any environment, the individuals that have the best adaptive features are the ones most likely to survive and reproduce

Selective Breeding

Selective breeding or artificial selection is when humans breed plants and animals for particular genetic characteristics. Humans have bred food crops from wild plants and domesticated animals for thousands of years

Genetic Engineering

Genetic engineering involves modifying the genome of an organism by introducing a gene from another organism to result in a desired characteristic

<u>Required Practica</u>

Equations for this topic

Quantitative chemistry

Threshold Concept

To understand that total mass of reactants equals total mass of products

molybdenum element name atomic number number of protons (2) atomic symbol

RAM is atomic mass of an element

RFM is the combination of all elements **Ar** in a compound or Molecule

Keywords

Conservation - the mass of the reactants must equal the mass of the products in a chemical reaction
Formula mass - the combined mass numbers of an element or compound
Concentration - the amount of substance dissolved in a solution
Equation - symbol representation of a chemical reaction
Loss - the process of losing something
Gain - the process of gaining something

Balancing Equations

As the same number of elements are at the start and the end of reactions. The Equation needs to be balanced.

 $Mg + O_2 \longrightarrow MgO$ (Unbalanced)

 $2Mg + O_2 \longrightarrow 2MgO$ (Balanced)

Conservation of Mass

The reactants mass must always equal the mass of the products

$$2g + 2g -> 4g$$

We can not destroy atoms.

<u> Moles</u>

Chemical amounts are measured in moles. One mole of a substance contains **6.02x10**²³ particles (Avagadro's number)

Concentration

Concentration is the amount of substance in a certain volume of solution (g/dm3)

Percentage by mass

The amount of an element in a compound is called its percentage composition. It can be calculated using the mass of the given element in the compound and the **RFM** of the Compound.

Limiting reactions

The reactant that gets used up first in a reaction is called the limiting reactant. This reactant is not in EXCESS

Reacting masses

The mass of a product or reactant can be determined from having a balanced symbol equation. Once balanced, the equation tells you how many moles of each substance react with each other: Mg + 2HCl -> MgCl₂ + H₂ (Balanced)

This equation states that: $1 : Mg \ 2 : HCl \ to \ form \ 1 : MgCl_2 \ 1 : H_2$

Using the formula and moles you can use this information to work out how much product you will make

Atomic Structure

Threshold Concept

Identify that there are three types of radiation

Alpha, Beta and Gamma α β γ Paper Aluminium Lead

Keywords

Atom - the smallest particle of a chemical element that can exist Proton - positively charged particle

Neutron - Particle with no charge Electron - Negatively charged particle

Wave - Energy transfer method

	bearings.			
	Irradiation	Contamination		
Description	Object is exposed to radiation but does not become radioactive	Object becomes radioactive and emits radiation		
Source	Danger is from radiation emitted outside the object	Danger from radiation emitted within the object		
Prevention	Prévented by using shielding, such as lead clothing	Prevented by safe handling of sources and airtight safety clathing		
Couses	Caused by the presence of radioactive sources outside the body	Caused by inhalation or ingestion of radioactive sources		

uat	ions for this top	<u> </u>		
²³⁵ ₉₂ U	decay by releasing an alpha particle	2α	+	²³¹ ₉₀ Th
14 6 C	decay by releasing an beta particle	0 -1β	+	14 7 N
²³⁵ ₉₂ U	decay by releasing a gamma wave	ο _γ	+	²³⁵ U

Particle Models of Matter

Threshold Concept

Changes of state are caused by energy changes

<u>States of matter</u>

Solid Liquid Gas

<u>Changes of state</u>

Links to information on the whole topic, consisting of slides, videos, and quizzes

<u>Keywords</u>

States of matter - solid, liquid or gas. Particles - the smallest part that a

substance can be broken down into.

Energy - a property of a substance that is stored or transferred in order for things to be done

Density - how compact a substance is. **Pressure** - continuous force acted on or against an object.

Required Practical

Density

Specific Heat Capacity

Equations for this topic

P=F/A Pressure = Force / Area

P = m/V Density = mass / volume

 $\Delta E = m \times c \times \Delta \theta$ Change in Energy = mass x specific heat capacity x change in temperature

 $\Delta E = m \times L$ Change in Energy = mass \times Specific Latent Heat

 $P = \rho \times g \times h$ Pressure in a liquid column = density \times gravity \times height (TRIPLE ONLY)

| For gases: p x y = constant For Gases: pressure x volume = constant ____ (TRIPLE ONLY)