Knowledge Organiser Booklet Year 11 Term 1

Core

Our working memories can only store a limited amount of information, whereas our long term memories can store limitless information. To learn successfully, we need to store core knowledge into our long term memories, so we can retrieve it when we need it.

For instance, if you are at work or in the shops and need to work out a 25% discount, you can't memorise 25% of every number, so you need to be able to quickly recall the method for calculating a percentage. Committing core knowledge to our longterm memories is a life-hack. It makes thinking about difficult things easier.

Using a knowledge organiser with regular retrieval activities is a way for you to store core knowledge \& subject specific words, into your long term memory so it is there when you need it.

Click here to be taken to the knowledge organiser part of the school website.

Contents

Clicking on the subjects below will take you directly to the knowledge organisers for each subject. These are to support learning that has taken place this past term. Use these to help reinforce the key knowledge. Use some of the strategies explained in the introduction to help you retain this important information.
Blending Learning expectations Page 3
How to use a Knowledge Organiser Page 4
Biology Page 11
Chemistry Page 20
English Language Page 32
English Literature Page 35
Maths. Page 40
PSHE Page 47
Physics Page 49
RSE Page 64
Triple Science Page 75

D) OnO OH

Make sure you have access to a computer at home (If you don't please make pastoral staff aware or email langley.homelearning@taw.org.uk)

Download Microsoft Teams on both your phone and computer. (If you don't know how to do this please ask a member of staff or do this in your next computing lesson)

Spend at least 2 hours a week using teams EVERY WEEK. (Engagement in teams can be tracked and monitored). You need to be accessing each of your class teams and recapping on the previous learning or completing additional tasks set by your class teacher.

If you have any issues with teams (e.g. login problems or missing classes etc then please email langley.homelearning@taw.org.uk)

Teams is a tool to support ongoing learning and should only be used for educational purposes.

	LOOK, COVER, WRITE, CHECK	DEFENTIONS TO KEY WORDS	FLASHCARDS	DUAL CODENG
$\begin{aligned} & \text { M } \\ & 11 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	Look at \& study an area of your knowledge organiser	Write down the key words \& definitions	Write key words, dates/formulae, equations/quotes on one side \& answers on the other	Draw pictures/diagrams/ cartoon strips
$$	Cover up your knowledge organiser and write everything you remember	Cover up the definitions. How many can you remember? Repeat.	Include pictures or diagrams if it helps. Read through them.	Label your pictures/diagrams/ cartoon strips
MMC--	Check. Correct mistakes in green and add anything you missed. Repeat	Check. Correct mistakes in green pen. Which ones do you find hard to remember?	Test yourself and get someone to test you.	Explain out loud to yourself or family/friend what your images show
	SELF GUIRZANG	MINDMAPS	PALRED RETRIEVAL	SPEAK, COVER, WRITE, CHECK
	Use your knowledge organiser to create quiz questions.	Create a mindmap of everything you can remember from your knowledge organiser	Give a family member/friend the knowledge organiser to hold	Read out loud the information from the knowledge organiser several times.
	Write down the answers to your quiz	Check your knowledge organiser \& use a green pen to make any corrections.	Get them to test you using the knowledge organiser	Cover up your knowledge organiser and write everything you remember
$\begin{aligned} & m \\ & 11 \\ & 1 \\ & 6 \\ & 6 \end{aligned}$	Keep self-quizzing until you get all the answers correct X V	Add additional information to your mindmap or make connections to other knowledge	Write down your answers to their questions	Check. Correct mistakes in green and add anything you missed. Repear.

Retrieval Placemat

Look at your knowledge organiser. Now cover it up and write down Key vocabulary \& definitons from memory:

First time: Look. Second time: Look. Third time: Look.
Cover. State 3 facts
Cover. State 3 facts

Look at the knowledge organiser again. Now cover it up and without looking, explain a concept or idea in your own words

Re-read your answer above. Look at the knowledge organiser again. Now cover it up and improve on your previous explanation in green pen.

Retrieval Relay

Look at your knowledge organiser. Now cover it up.

First time: Write down
everything you can
remember

Second time: Look.
Cover. Write down
everything you can
remember

Third time: Look.
Cover. Write down
everything you can
remember

Write down everything here that you didn't remember:

Vocabulary focus 1

Look at your knowledge organiser. Select a key word and write it here:

Write a definition of the key word in your own words - not the same as the one on the knowledge organiser:

Write a sentence with the key word in it:

Create a question where the key word is the answer:

What other words are connected to this key word?

Draw a picture or diagram to help you remember this key word:

Vocabulary focus 2

Definition:

Characteristics:

Key word:

Examples:
Non-examples:

What should my knowledge organiser homework look like?

What should my knowledge organiser homework look like?

Homework activity written and underlined

Stages of homework
activity as subtitles

Biology

Reproduction

Threshold Concept

Reproduction can happen sexually and asexually

Equations for this topic

Keywords
－Sperm：male reproductive cell that contains genetic material
－Egg：female reproductive cell that contains genetic material
－Reproduction：the joining of sex cells（a sperm and egg）to produce offspring
－Fertilisation：the joining of a male and female sex cell／genetic material
－Develop：build upon given information ＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝

Sperm cell

Adaptations
－The head contains the genetic material for fertilisation in a haploid nucleus（containing half the normal number of chromosomes）
－The acrosome in the head contains digestive enzymes so that a sperm can penetrate an egg
－The mid－piece is packed with mitochondria to release energy needed to swim and fertilise the egg －The tail enables the sperm to swim

ニニニニニニニニニニニニニニニニニニ

Egg cell

－Contains a lot of cytoplasm which has nutrients for the grow th of the early embryo
－Haploid nucleus contains the genetic material for fertilisation
－Cell membrane changes after fertilisation by a single sperm so that no more sperm can enter

Menstrual cycle

IVF

Ecology

Threshold Concept

Understand that living things interact with the world around them

Keywords

Living - Undertaking the seven processes of living things
Changes - structural, physiological and behavioural changes that allow species to compete
Animal - Living creature of one of seven domains
Plant - Living tissue that is a producer Energy - The flow through all organisms and food chains

Food Chains/Webs - show the flow
of energy
FOOD WEB 圆BYJU's

Threshold Concept

Respiration and photosynthesis are chemical processes that provide plants and animals with energy.

Keywords

- Respiration: Respiration is the body's way of producing energy from the food we eat. It involves the breakdown of glucose in the presence of oxygen into carbon dioxide and water with the release of energy-generating molecules called ATP.
- Photosynthesis: is a chemical reaction that takes place in the chloroplasts of green plant cells, where light energy is used to convert carbon dioxide and water into glucose and oxygen.
- Energy: The ability to do work
- Limiting factors: Limiting factors affect the rate of a reaction. A limiting factor is a condition, that when in shortage, slows down the rate of a reaction.
Reaction: A chemical reaction is when one or more substances change and produce one or more new chemical substances.

Photosynthesis

Xylem and Phloem

water and
minerals
no end walls
between cells

outer cells
are not living
one-way
only $|$

Infection and response

Threshold Concept

Pathogens are microorganisms that cause disease

Communicable and non-communicable disease:

- Communicable, which can be transferred from one person to another, or from one organism to another, eg in humans, these include measles, food poisoning and malaria
- Non-communicable, which are not transferred between people or other organisms

Fighting against disease

Antibiotics vs painkillers

- Antibiotics are

 substances that slow I down or stop the growth lof bacteria.- Painkillers are chemicals ithat relieve the symptoms lbut do not kill the !pathogens.

Vaccinations

| Vaccines allow a dead or altered I form of the disease causing | pathogen to be introduced into the body, which contain a specific antigen.

Keywords

Pathogens: A microorganism that causes disease e.g. bacteria, virus, protist, fungus.

- Microorganism: Are so small they can only be seen using a microscope.
- Virus: A disease causing agent about $1 / 100^{\text {th }}$ of the size of a bacterial cell. Can only replicate within host body cell/
- Bacteria: A single celled microorganism without a true nucleus, some cause disease. Fungi: A microorganism that can cause disease, and that produces spores that can spread to other organisms.

Pathogens

Required practical

protist

[^0]Chemistry

Foundations of chemistry

Threshold Concept

All matter is made of particles

States of matter:

Stare	Solid	Liquid	Gas
Closeness of particles	Very close	Close	Far apart
Arrangement of particles	Regular pattern	Randomly arranged	Randomly arranged
Movementor particles	Vibrate around a fixed position	Move around each other	Move quickly in all directions
Energy of particles	Low energy	Greater energy	Highest energy
2D diagram			

Atoms and compounds:

Elements

contain just one type of atom.
Oxygen (O_{2})

Compounds

 contain different types of atom bonded together. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$

Pure substances:

Pure substances are made from only one chemical element or one compound.
For example, salt is a pure substance made only of sodium chloride.

The pH scale:

Keywords

- Particles: The tiny things that all materials are made from. The smallest unit of matter.
- Atom: Atoms are the building blocks of all matter. Everything is made of atoms - even yourself. They are the smallest particle of an element, which are far I too small to see.
- Solid: Have a fixed shape and cannot flow, because their particles cannot move from place to place, cannot be compressed (squashed), because their particles are close together and have no space to move into.
I - Liquid: Flow and take the shape of their container, I because their particles can move around each other, I cannot be compressed, because their particles are close together and have no space to move into - Gas: Flow and completely fill their container, because their particles can move quickly in all directions, can be compressed, because their I particles are far apart and have space to move into

Solubility:

- Some solids dissolve in water to make a solution.

- These solids are soluble.
- A solution is made from a solute (usually a solid) and a solvent (liquid).
- Some gases, such as oxygen and carbon dioxide, can also dissolve in water.

Required practical: Chromatography

Threshold Concept

All elements fit within the

Periodic Table

Link to information on I most of the topic， consisting of slides， videos，and quizzes

Keywords

Elements－a substance that cannot be broken down into any other substance．
Periodic Table－a table showing every element that is known to exist．
Symbol－a sign／letter／character that is used to represent something

Group 1－Alkali Metals

1

All share similar properties：
－Are soft（can be cut）
－Have relatively low MP
－Have low densities
The further down the group you go，the more reactive the elements become．
－They will react will air and tarnish quite quickly．
－They will react with water to produce an alkaline solution（hence the name） and turn universal indicator bue／purple

Electronic Configuration

Example using an atom of sodium
No．of electrons per shell
$1^{\text {st }}$ shell：up to 2
$2^{\text {nd }}$ shell：up to 8 $3^{\text {rd }}$ shell：up to 8 etc
－ニニニニニニニニニニニニニ

Isotopes

Atoms of the same element must have the same number of protons，but they can have different numbers of neutrons． Atoms of the same element with different numbers of neutrons are called isotopes．Isatopes of an element have：
－the some atomic number
－different mass numbers

RAM \＆Isotopes

RAM

－diferent mass number

Group 7 －Halogens

7

F

All have 7 electrons in outer shell．
 All di All diatomic（made up of two atoms bonded together．

The further down the group you go，the less reactive the elements become．
The further down the group you go，the higher its MP and I BP，because：
－Molecules become larger
－Intermolecular forces
become stronger
－More energy is needed toll overcome these forces

Group 0 －Noble Gases

0
He

All have low boiling points． Lower down the group， the higher it gets．
This is because，going down the group：
－Atoms become larger
－Intermolecular forces between atoms become stronger
－More energy is needed to overcome these forces

Metals

Threshold Concept

Identify most metals have similar properties

Metals and non metals

Most elements on the periodic table are metals.
They are grouped together
 in the middle to the lefthand side of the periodic table.
Non metals are on the right-hand side.

Physical properties of metals

Properties	Metals	Non-metals
Appearance	Shiny	Dull
Hardness	Very hard or hard	Brittle
Malleability	Malleable	Non-malleable
Ductility	Ductile	Non-ductile
Heat conduction	Good conductor	Bad conductor
Conduction of electricity	Good conductor	Bad conductor
State	Solid	Solids, liquid, gases
Density	Higher	Lower

Keywords

Metal....... DEFINITION

Non metal DEFINITION
Property a characteristic of a particular substance
Reaction a process that leads to the change of one set of chemical substances into another Alloy a mixture of two or more metals, or a metal and a non-metal
Displacement A more reactive metal will displace a less reactive metal from its compound.

Metals and alloys

Making alloys changes the metals properties by changing its structure. Alloying is done for many reasons, typically to increase strength, increase corrosion resistance, or reduce costs

The reactivity series

The Reactivity Series lists metals in order how easily they react with other substances

Rock Cycle

Threshold Concept

Understand that rocks change iwithin 3 types over time.

Types of rocks
 Sedimentary rocks

Sedimentary rocks are formed from sediments that have settled at the bottom of a lake, sea or ocean, and have been compressed over millions of years.

Metamorphic rocks

Metamorphic rocks are formed from other rocks which change
due to heat or pressure.

Igneous rocks

Igneous rocks are formed from molten (liquid) rock that has cooled and solidified.

Types of weathering

1. Biological weathering

This describes rocks being broken up by the roots of plants, or animals burrowing into them.

2. Chemical weathering

This describes rocks being broken up because substances in rainwater, rivers and seawater or the air, react with the in I the rocks.

3. Physical weathering

This describes rocks being broken up by changes in temperature, freezing and thawing of trapped water or the action of i waves and rivers.

Keywords

- Rock: The solid mineral material forming part of the surface of the earth and other similar planets, exposed on the surface or underlying the soil.
- Earth: The planet on which we live; the world.
- Cycle: Move in or follow a regularly repeated sequence of events.
- Temperature: The degree or intensity of heat present in a substance or object.
- Pressure: Continuous physical force exerted on or against an object by something in contact with it.

The rock cycle

Rocks on earth do not always stay the same.

Rocks are continually changing due to processes such as, weathering, erosion and large earth movements. The rocks are gradually recycled over millions of years, changing between the different rock types.

Required practical

Equations for this topic

Chemistry of the atmosphere

Threshold Concept

The Earth's atmosphere is made of different gases.

The Proportion of gases in the

 earths atmosphere

CKMN: 217

Keywords

- Atmosphere: An atmosphere is the layers of gases surrounding a planet.
- Pollutants: A pollutant is a chemical. or biological substance which harms water, air, I or land quality.
- Climate change: Climate change refers to long-term shifts in temperatures and weather patterns.
- Combustion: Combustion is another name for burning. In a combustion reaction, fuel is burned and reacts with oxygen to release energy.
Global Warming: Global warming is the long-term warming of the planet's overall temperature.

Greenhouse gases

Greenhouse gases present in the atmosphere include:

- water vapour

- carbon dioxide

History of the earths atmosphere

-The proportion of oxygen increased because of photosynthesis by plants and algae.
-The proportion of ammonia decreased as it reacted with the newly formed oxygen in the atmosphere to form nitrogen and water vapour.
-The proportion of methane decreased as it reacted with the newly formed oxygen to form carbon dioxide and water.

Combustion

Complete combustion:
Propane + oxygen \rightarrow carbon dioxide + water
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Incomplete combustion:
Propane + oxygen \rightarrow carbon monoxide +
carbon + water
$\mathrm{C}_{3} \mathrm{H}_{8}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+\mathrm{C}+4 \mathrm{H}_{2} \mathrm{O}$

Osyem

Required practical Testing for gases

Equations for this topic

Bonding Part 1

Threshold Concept

How do 100 elements make up

 everything in the universe?
Forming ions

An ion is an charged particle.
Atoms will lose or gain electrons to get a full outer shell.
The metal atom loses electrons to become a positive ion
The non-metal atom gains electrons to become a negative ion.

Ionic compounds and properties
Positive and negative ions join together to form a giant ionic lattice

Ionic compounds don't conduct when solid because the ions are locked in position. When molten or dissolved the ions are free to move and can conduct

Keywords

Electron - a subatomic particle with a negative charge
Electrostatic attraction - strong attraction between oppositely charged ions
Weak intermolecular forces - force of attraction between atoms, elements and molecules
Delocalised electron - free moving electron that isn't a part of any atom
Ion - a charged particle

Ionic bonds

Ionic bonds are formed between metals and non-metals. Metals lose electrons and nonmetals gain electrons. The oppositely charged ions attract one another forming an ionic bond.

History of the atom JJ Thomson - Suggested the plum pudding model. Atoms were a ball of positive charge with negative particles
 scattered within.

Ernest Rutherford - Alpha scattering experiment. Found that atoms has a very small, positive
 nucleus and the majority of atoms are empty space.

Bonding Part 2

Threshold Concept

How do 100 elements make up

 everything in the universe?
Covalent bonds

Two non-metals will form a covalent bond. The atoms share electrons to make themselves stable.

$\mathrm{Cl}-\mathrm{Cl}$

 bond

- 2 shared pairs = a double bond
- 3 shared pairs = a triple bond

Keywords

Electron - a subatomic particle with a negative charge

Electrostatic attraction -strong attraction between oppositely charged ions
Weak intermolecular forces - force of attraction between atoms, elements and molecules
Delocalised electron - free moving electron that isn't a part of any atom
Ion - a charged particle

Simple Covalent compounds

Simple covalent compounds have strong covalent bonds between atoms and weak intermolecular forces between molecules.

Properties - low m.p and b.p

- cannot conduct electricity

Metallic bonding
Metals consist of a giant metallic structure.
They are positive metal ions surrounded by a sea of delocalised electrons

Quantitative chemistry

Threshold Concept

To understand that total mass of reactants equals total mass of products

Keywords

Conservation - the mass of the reactants must equal the mass of the products in a chemical reaction Formula mass - the combined mass numbers of an element or compound Concentration - the amount of substance dissolved in a solution Equation - symbol representation of a chemical reaction
Loss - the process of losing something Gain - the process of gaining something

Balancing Equations

As the same number of elements are at the start and the end of reactions. The Equation needs to be balanced.
$\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$ (Unbalanced)
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ (Balanced)

Conservation of Mass

 reactants product

The reactants mass must always equal the mass of the products

$$
2 g+2 g \rightarrow 4 g
$$

We can not destroy atoms.

Chemical analysis

Threshold Concept

How do we identify a substance?

Pure and impure

Pure substances are made up of just one type of element or compound.
They will have one set melting or boiling point.

Impure substances are a mixture of elements or compounds and have a range of melting/boiling points.

Formulations

A formulation is a mixture which has been designed as a useful product.

- Fuels
- Cleaning products
- Paints

Test for gases

Keywords

Pure - a substance made from just one element of compound
Impure - a substance made from more than one element or compound
Analyse - to find the chemical composition of a substance
Sample - a portion of a substance taken from a larger amount

Chromatography required practical

Chromatography is a method used to separate the substances in a mixtures.

Stationary phase - where the molecules can't move (chromatography paper)
Mobile phase - where the molecules can move (the solvent)

Rf Value
$R_{f}=\frac{\text { distance moved by substance }}{\text { distance moved by solvent }}$

Chemical analysis Triple

Threshold Concept	
How do we identify a substance？	
Testing for metal ions	
Metal ions will when they reac	form coloured precipitates
Metal Cation	Effect of adding NaOH
Aluminium（ Al^{3+} ）	White precipitate，dissolves in excess NaOH to form a colourless solution
Magnesium（ Mg^{2+} ）	White precipitate，incoluble so remains in excess NaOH
Calcium（ Ca^{2+} ）	White precipitate，insoluble so remains in excess NaOH
Copper（II）$\left(\mathrm{Cu}^{2+}\right)$	Light blue precipitate，insoluble in excess
Iron（II）$\left(\mathrm{Fe}^{2+}\right)$	Green precipitate，insoluble in excess
Iron（III）$\left(\mathrm{Fe}^{3+}\right)$ 回䬺鹿回 	Red－brown precipitate，insoluble in excess \qquad吅

Testing for carbonate ions $\mathrm{CO}_{3}{ }^{2-}$ $\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Testina for Sulphate ions
shin cractot
sauto

$$
\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}
$$

－Add barium chloride
－White precipitate formed

Flame emission spectroscopy

An instrumental technique used to identify metal ions．

Keywords

Pure－a substance made from just one element of compound
Impure－a substance made from more than one element or compound
Analyse－to find the chemical composition of a substance
Sample－a portion of a substance taken from a larger amount

Identifying ions required practical

Testing for Halide ions $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$

－Add nitric acid
－Add a few drops of silver nitrate
－Chloride forms a white precipitate
－Bromide forms a cream precipitate
－Iodide forms a yellow precipitate

English Language

Threshold Concept- Year 10-Language- Reading:

TCl -Understanding texts: identifying explicit and implicit information; selecting accurate and precise quotations.
TC2 - Demonstrate and appreciation of the writer's craft through analysis and critically evaluative comments.
TC4 - Evaluate writer's craft including comparison skills.

Showing your understanding of texts- use PEEZL to structure your answers.

Component 1 , Question 2 response- $5 / 5$ marks.

Point-rephrase key words from question to start your answer.
Evidence- introduce quotation(s).
Mention techniques here! Explanation - explain what quotations shows. Zoom- pick a single word choice made by the writer and explain what it implies.

Link to reader - mention how reader may react and why.

You should use this info
to get the base knowledge needed to confidenily answer the different types of question on component 1 and 2.

The wriker creates the impression thet, there is is misundectandiny betwen the chanaders of Enma and RAbie. For eximples the uriter describes how ksobie "was well known- for hús "grampiness", yet "Emmas mistorke it for shapass". The fact that Emma mistidles his goumpy atbibude for being shy omphasises hon" the couple do not fully understarde each ther ors they misintempet seoul others belacuions.

The uniter who coules the omparession that Emma and Robbier are 6oth very different people. Whilst Roboie is "twenty yeurs otser than her" and quite groumpy, Empa is impressionedte and slightely haive as she beliares"te nos mare matare then he vors" as a result of his sulking uttitade, This implession is rideatod when the invere explairs how after a veeck "Empra was fesling the red for some tive, apeote frome Rabie". This highlights He distunt nutwe of their relationsins and suggets it may mot be as strong or loning as she becieves.

Expressing higher order ideas in explanations (for analysis/evaluation).

Use this to transform your responses from this...

The quotation: "as strong as a bull" reflects that the man is like a strong cow. X

To this...
The quotation "as strong as a bull" shows that the man in question is a powerful physical specimen. It may also reflect the man is mentally łough, perhaps even slubborn. The noun "bull" might reflect the writer's intention to show that the man is aggressive, perhaps foreshadowing harm he does to others later in the story. \checkmark

Identifying language and structural features.

Read lines 7-16.
What impressions does the writer create of Emma and Robbie in these lines? [5] You must refer to the language used in the text to support your answer, using relevant subject terminology where appropriate.
Whenever you see the highlighted words, try to identify and mention the writer's technique choices in your essays.

Common language techniques	Common structural features
Simile	Lists
Metaphor	Repetition of words
Personification	Lexical (word) patterning
Adjective	Repetition of a technique
Adverb	Tone shift

Use this to

 transform your responses from this...The quotation: "as strong as a bull" shows...

To this...

The quotation: "as strong as a bull" is a simile, which shows...

Comparing successfully- using comparative connectives.

Words thot signal a comparison	Words that signal a contast
- As	, homever
- Also	- Although
- Like	- Whereas
- Alike	- In contrast
- Likewise	. Yet
- Resembles	- Differs from
- Similor	- Instead
- Justas	- Unlike
- Just like	- On the contrary
- Equally	- Different from
- Same both	- On the other hand

Platinum answers may include: The words "more" "less" regularly AND comparative adjectives.

Words that end in 'er' that compare two things i.e. greater.

Use these frequently when comparing nonfiction texts.

Both the 'Penny Review and miners being rescued. Thiscreates a sense of drama as the rest of the texts build up tension and anticipation for their rescue. However, in the Chilean article the day of the rescue is also mentioned at the beginning: the "scenes of jubilation erupted" as the miners were rescued. This dramatic verb 'erupted' portrays the excitement and

Threshold Concept- Year 10-Writing:

TC5 - Communicate clearly, effectively, and imaginatively, selecting and adapting tone, style and register for different forms, purposes and audiences.
TC6 - Organise information and ideas, using structural and grammatical features to support coherence and cohesion of texts
TC7 - Use a range of sentence structures for clarity, purpose and effect, with accurate punctuation and spelling.

English Literature

Threshold Concept－Year 10－A Christmas Carol：
TC1－Understanding texts
TC2－Demonstrate an appreciation of the writer＇s craft through analysis and critically evaluative comments．
TC3－Understanding the relationships between texts and the contexts in which they were written．

A plot and character summary of＇A Christmas Carol：＇Full text（if on MS Teams）＝A Christmas Carol Audiobook

You should use this information to get the base knowledge needed for Chares Dickens＇story．

THE CHARACTERS

Scrooge
A mean，miserabe，lotiely old miser．Can he learn the truth about Christmas and about himself before it is too late？

Ghost of Christmas past Why does this ghost make Scrooge weep with both joy and sonow？

Using this information can you：
－Recount what happens from start to finish in the novella？ －Explain who the primary characters are，and what makes them unique？
E．g．The Ghost of Christmas Yet To Come shows Scrooge a horrible future where he dies－he is a silent，petrifying ghost．

How to analyse the writer＇s craft－break the quotation up into smaller chunks．Example on Scrooge．

Golden－
adjective＝
suggests value．
Scrooge is a rare and valuable human valuable human
being－a nice rich man．He valued by the people around them，now！

Scrooge also now values the sunlight and th world around him＝he is appreciative．

Noun：Sunlight brings life，light and warmth．Scrooge brings life as he gives money to Bob to ensure Tiny Tim continues to live．He brings light as he is a much more jolly and friendly person．He brings warmth as he is a far warmer，more compassionate man．

Adjective－Scrooge sees Heaven above him in the sky．London is now a place he is happy in－it is a heaven to him．It also suggests his new religious side－ where he follows God＇s teachings to treat others well．

Adjective－links to the idea of rebirth．Scrooge is starting afresh－he is reincarnated as a completely new Scrooge．The whole world is fresh to him and he is fresh to the world and the people around him．too．

In order to be successful，you must know a range of different moments from the whole story． For example，other moments where Scrooge is important 回院晏 include：
－Scrooge＇s introduction as a miserable boss．＂Bah！Humbug！＂
－Scrooge as a child．＂Poor
boy！＂
－Scrooge＇s reaction to the ghosts．＂I will honour Christmas in my heart．＂

The relationships between A Christmas Carol and the historical context in which they are written．

Prince Albert and Queen Victoria decorating a Christmas tree 1848. Where the tradition started．

Saint Nicholas－patron saint of children，known for his generosity and kindness．

The Ghost of Christmas Present，who resembles Saint Nicholas and is surrounded by new Victorian Christmas tradition．

Look out for other parts of the novella clearly inspired by the outside world．i．e． poverty， treatment of children， workhouses．

Threshold Concept- Year 10- Poetry:

TC I - Understanding texts
TC2 - Demonstrate an appreciation of the writer's craft through analysis and critically evaluative comments.
TC3 - Show understanding of the relationships between texts, and the contexts in which they were written.

1 sentence summaries of each poem: Full annotations (if on MS Teams) = Annotated 15 poems.

Poem	1 sentence summary
The Manhunt	The one where a wife writes about her scarred soldier-husband.
Sonnet 43	The one about listing ways you love someone.
London	The one about hating a city and what it represents.
The Soldier	The one about the glory of dying for England.
She Walks in Beauty	The one about the beauty of a mourning woman.
Living Space	The one about the cramped Indian slums.
As Impercifibly as Grief.	The one about fear of time passing away and death.
Cozy Apolgia	The one about the specialness of a normal "boring" relationship.
Valentine	The one about how love is like an onion
A Wife in London	The one about the wife who finds out her husband has died in South Africa.
Death of a Naturalist	The one about where frogs teach a child about reproduction.
Hawk Roosting	The one about where a bird is compared to humanity.
To Autumn	The one where a season is compared to a woman/ goddess.
Afternoons	The one where about the restrictions of motherhood.
Dulce Et Decorum Est	The one about a WW1 gas attack.
Ozymandias	The one about the broken statue of someone who was powerful.
Mametz Wood	The one about soldiers' remains in farming fields.
The Prelude	The one about the magic of cold winter days.

You should use this info to get the base knowledge needed for each poem.
Using this information can you:

- Recount the main idea from each poem?
- Begin to recount quotations/words/the background in the poems? \checkmark E.g. London is a poem about how horrible the capital of England is to the poet.

How to analyse the poet's craft- use FLIRT to cover a range of different features in your responses.

ozymandias example.

Form sonnet
Sanguage

Word choices? Adjectives/adverbs? Verbs? Lexical fields? Connotations?

Similes? Metaphors? Personification? Hyperbole? Senses? Alliteration? Onomatopoeia?

Rhyme/structure

Rhyme scheme? Enjambment Caesura? Tone

Joyful? Depressed? Angry? Ironic? Nostalgic? Shifting?

Sonnet $=$ love poem $=$ Ozymandias loved his power.
"desert" "boundless" "bare" lexical field of loneliness reflects how forgotten Ozymandias is now.
"sneer of cold command" strong sounding alliteration suggest violence of Ozymandias to his slaves
"Stand of the desert. Near them..." Caesura = isolation of the statue.
"Ozymandias- King of kings" ironic tone-
Ozymandias' power has faded completely.

Linking the content of the poem to the writer's life/ the history behind it! This links to the context of the poem, because...

Each of the poems have stories behind them that inspired the writers- make sure you know them and mention them to showcase your knowledge!

Threshold Concept- Year 10- Romeo and Juliet:

TCI - Understanding texts

TC2 - Demonstrate an appreciation of the writer's craft through analysis and critically evaluative comments.

A plot and character summary of 'Romeo and Juliet:' Full text (if on MS Teams) = Romeo and Juliet Audiobook

You should use this information to get the base knowledge needed for Shakespeare's play.
\checkmark E.g. Juliet is instructed to marry Paris by Capulet and Lady Capulet, but fakes her death to avoid this.

Using this information can you:

- Recount what happens from start to finish in the play?
- Explain who the primary characters are, and what makes them unique?

How to analyse the writer's craft- mention the writer's name and all of the choices they make. Example on Tybalt (focus on trying to write explanations like you see in the green box below.)

The character of Tybalt is presented purposely by Shakespeare to be aggressive and deadly:"turn, Benvalio and look unon thy death" Shakespeare has Tybalt use an imperafive here to command the Montague characters to do what he says as he feels superior to them. His use of the metaphor "death" to describe his sword, shows that he often uses the object with theintention of killing his opponents. The original audience may celebrate Tybalt being like this, as it reflects his masculinity and strength in a world which promoted warrior culture, but a modern audience would more likely see his language as overly violent and completely unnecessary, as conflict is looked down upon more so now.

Technique identified.

What it shows

Audience reaction(s).

Developing this further- discussing audience reaction.

A really effective way to showcase your understanding of the text is by comparing how an original audience might react vs. how a modern audience might react (see the blue part of the WAGOLL above). This is how we do this:

Try to consider, as you read the play, your own reactions to characters/ events. Then compare this to how an
audience in the 1590s (with very different views to us) would react.

Threshold Concept- Year 10- An Inspector Calls:

TC1 - Understanding texts
TC2 - Demonstrate an appreciation of the writer's craft through analysis and critically evaluative comments.

A plot and character summary of 'An Inspector Calls:' Full text (if on MS Teams) = An Inspector Calls audiobook

You should use this information to get the base knowledge needed for J.B. Priestley's play.

- Recount what happens from start to finish in the play?
- Explain who the primary characters are, and what makes them unique?
E.g. Mr Birling is an ignorant Capitalist who sacked Eva Smith for demanding equal pay.

How to analyse the writer's craft- mention the writer's name and all of the choices they make. Example on Sheila (focus on trying to write explanations like you see in green here.)

The character of Sheila Birling is used to reflect that the younger generation have a chance to be different to their elders. The quotation: "these girls aren't cheap labour, they're people" shows Sheila's new understanding that women (regardless of class) should be treated more equally to men. J.B. Priestley has her criticise her male relatives who treat females as lower beings. The adjective "cheap" is used by the writer to show that she feels they are worth more than how society sees them. The original audience may dislike a woman challenging o man at this time as it is not the norm at all, though Sheila would be celebrated by a more modern qudience as she is seen more so as a strong feminist figure, similar to the suffragettes.

Technique identified.

What it shows

Audience reaction(s). In order to be successful, you must know a range of different moments from the whole play. For example, other moments where Sheila is important include:

- Sheila's introduction as Sheltered and childish "mummy"
 "daddy"
- Sheila's new-found power in her speech and interruptions "(cutting in)" - Sheila's change and refusal to accept Gerald's engagement ring. "No...I must think"

Developing this further- discussing audience reaction.

A really effective way to showcase your understanding of the text is by comparing how an original audience might react vs. how a modern audience might react (see the blue part of the WAGOLL above). This is how we do this:

Edna is lucky to work for the Birlings. She has a stable job and an opportunity to live in a beautiful house. (Original theatre-goers more likely to have maids and be Capitalists.)

Edna is unlucky to work for the Birlings. She would earn very little indeed and has to wait on a whole family at all hours of the day. (Modern audiences more sympathetic to working-class)

Maths

Year 11 - Graphs...

Gradients and lines

What do I need to be able to do?

- Equations of lines parallel to the axis
- Plot and interpret $y=m x+c$
- Find the equation of a straight line from a graph, given one point and gradient, or from two points

Keywords

Gradient: the steepness of a line
Intercept: where two lines cross. The y-intercept: where the line meets
the y-axis
Parallel: two lines that never meet with the same gradient
Co-ordinate: a set of values that show an exact position on a graph given as (x, y)
Linear: linear graphs (straight line) - linear difference by addition/subtraction
Mid-point: The middle of. The point halfway along

Interpreting $y=m x+c$
The coefficient of x the number in front of x tells us the gradient of the line

The equation of a line can be rearranged. Eg $y=c+m x$

$$
c=y-m x
$$

dentify which coefficient. you are identifyng or comparng

Find the equation from a graph

Equation of line - given point and gradient

A line has a gradient of -2 and passes through the point $(1,-4)$
What is the equation of the line?

$$
y=m x+c
$$

We know the gradient is -2 so...

$$
y=-2 x+c
$$

We now know that the point $(1,-4)$ is on the line so we can substitute these values in as $x=1$ and $y=-4$ and then solve to get c :

$$
\begin{gathered}
-4=-2(1)+c \\
-4=-2+c \\
-4+2=c \\
c=-2
\end{gathered}
$$

Therefore the equation of the line is:

$$
y=-2 x-2
$$

Plotting $y=m x+c$ graphs

This represents a coordinate pair
$(-3,-10)$

Finding the equation of the line from two points

The y-intercept is at -5

To calculate the gradient (m) from two points on a

graph: $\mathrm{m}=\frac{\text { change in } y}{\text { changein } x}$

$$
\begin{aligned}
& m=\frac{20}{2} \\
& m=10
\end{aligned}
$$

Therefore the equation of the graph is:

$$
y=10 x-5
$$

Finding the gradient from two points

Gradient of line between $(2,5)$ and $(3,14)$

$$
\begin{gathered}
\mathrm{m}=\frac{\text { change in } y}{\text { changein } x} \\
m=\frac{14-5}{3-2} \\
m=\frac{9}{1}
\end{gathered}
$$

Therefore the gradient between the two points is 9

Year 11 - Graphs...

Non-linear graphs

What do I need to be able to

 do?- Plot and read quadratic graphs
- Plot and read cubic graphs
- Plot and read from reciprocal graphs
Recognise graph shapes
- Identify and interpret roots and intercepts of quadratics

Keywords

Root: Solutions to graph. Where the graph crosses x axis
Intercept: where two lines cross. The y-intercept: where the line meets
the y-axis
Parallel: two lines that never meet with the same gradient
Co-ordinate: a set of values that show an exact position on a graph
Quadratic: \boldsymbol{x}^{2} the highest exponent of the variable (usually x) is a square
Cubic: \boldsymbol{x}^{3} the highest exponent of the variable is three
Reciprocal: a pair of numbers that multiply together to give 1
Quadratic graphs
A quadratic graph will always be in the shape of a parabola.

$$
y=x^{2} \quad y=-x^{2}
$$

The roots of a quadratic graph are where the graph crosses the x axis. The roots are the solutions to the equation.

Cubic graphs

- The highest power of x is 3 .
- The graph to the right shows

$$
y=x^{3}
$$

- Other examples of cubic graphs could be $y=x^{3}-5, y=2 x^{3}$ or $y=x^{3}+x^{2}+1$

$$
y=x^{2}+2 x-8
$$

A quadratic equation can be solved from its graph.
The roots of the graph tell us the possible solutions for the equation. There can be 1 root, 2 roots or no roots for a quadratic equation. This is dependant on how many times the graph crosses the x axis.

$$
\text { Roots } x=-4
$$

$$
x=2
$$

y intercept $=-8$
($-1,-9$)

Reciprocal graphs

- The graph shows $y=\frac{1}{x}$

In this example, there are asymptotes at the x and y axes - this means that the graph gets closer and closer to the axes without ever touching them.

Completing table of values

If you have to draw your own table of values use x values from -2 to 2

Complete the table for $y=x^{2}+2 x-4$

x	-4	-3	-2	-1	0	1	2
y	4					-1	

$$
\text { When } x=-4 \quad y=-4^{2}+(2 \times-4)-4
$$

$$
y=16+-8-4
$$

$$
y=4
$$

$$
\text { When } x=1 \quad y=1^{2}+(2 \times 1)-4
$$

$$
y=1+2-4
$$

$$
y=-1
$$

Substitute x values into the equation you are given to find the values of y

This is a coordinate of $(1,-1)$ which can be plotted to create a graph

Types of graphs

You need to be able to recognise different types of graphs

Quadratic graphs

$$
y=x^{2}
$$

Reciprocal graphs

$$
y=\frac{1}{x}
$$

Circle graphs
$x^{2}+y^{2}=4$

Cubic graphs

Year 11 - Graphs...

 using graphs

 using graphs}

What do I need to be able to do?

Construct and interpret conversion graphs and other reallife straight line graphs
Construct and interpret distance/time and speed/time graphs

- Recognise and interpret proportion graphs

Keywords

Convert: Change a value or expression from one form to another
Gradient: How steep a line is
intercept: Where two graphs cross
Distance-time graph: A graph that shows a journey and the relationship between the distance reached in a given time
Speed-time graph: A graph that shows the relationship between the speed and time taken
Real-life graph: This is a graph that represents a situation that we would see in real life
Direct Proportion: A relationship between two quantities such that as one increases, the other increases (or as one decreases, the other decreases) at the same rate.
Inverse proportion: A relationship between two quantities such that as one increase, the other decrease

Conversion graphs

Change $£ 80$ into Turkish lira

1) Start at 80 on the horizontal axes as this for pounds and go up vertically until you reach the line
2) From the line, read horizontally until you get to the axis showing lira

Change 600 Turkish lira to pounds

As this value is not shown by the graph, we have to use a value that is to help.

1) Start at 200 on the vertical axes and go across horizontally until you reach the line. From the line, read vertically until you get to the axes.
2)

The speed of an object can be calculated from the gradient of the graph. E.g. calculate the speed at which the object travelled between 9am and I lam.

$$
\text { Speed }=30 \div 2
$$

$$
=15 \mathrm{~km} / \mathrm{hr}
$$

Proportion graphs

Direct proportion graph

Inverse proportion graph

Speed-time graph

Here is a speed time graph showing the speed a motorbike is travelling at as time goes on

A- the motorbike is accelerating quite hard B - the bike is still accelerating, but less hard C - The bike is now travelling at a constant speed of $75 \mathrm{~km} / \mathrm{hr}$ D - The bike is slowing down at a constant rate
speed $\overline{(k m} / \overline{\mathrm{h}})$
100

Year 11 - Algebra... Expanding and factotoising

What do I need to be able to

 do?Expand and simplify brackets
Factorise with single brackets
Factorise quadratic expressions
Solve equations equal to 0
Solve quadratic equations by
factorisation

Keywords

Expand: multiply each term in the bracket by expression outside the bracket
Simplify: collect like terms
Factorise: reverse of expanding. Taking out a common factor
Quadratic: The highest power of the variable is squared e.g. x^{2}
Expression: numbers, symbols and operators grouped together to show the value of something, no equals sign
Equation: shows that two expressions are equal, it will have an equals sign = Solve: find a numerical value that satisfies an equation

Expand and simplify with a single bracket

Expand means 'multiply out'	$5(3 x+4)$
$=$	$5 \times 3 x+5 \times 4$
$=$	$15 x+20$

You could also use a grid to expand the brackets

Expand each of the brackets first and then simplify

$$
\begin{aligned}
& 3(2 x-1)-4(3 x-2) \\
& =6 x-3-12 x+8
\end{aligned}
$$

$$
\begin{array}{|c|c|c|}
\cline { 2 - 3 } x & 3 x & +4 \\
\hline 5 & 15 x & +20 \\
\hline
\end{array}=15 x+20
$$

Factorise into a single bracket

Factorise $12 x^{2} y z-27 x z$
$3 x z \times 4 x y-3 x z \times 90$
$3 x z(4 x y-9)$

Expand binomials

Use the grid method to expand brackets

Remember to simplify
the $-6 x$ and $+5 x$
$(5 x-3)(2 x+1)$

x	$5 x$	-3
$2 x$	$10 x^{2}$	$-6 x$
+1	$+5 x$	-3
	$10 x^{2}-6 x+5 x-3$	
$=10 x^{2}-x-3$		

Another method

$$
(3 x+2)(5 x+3)
$$

$=15 x^{2}+9 x+10 x+6$
$=15 x^{2}+19 x+6$

Factorise quadratic expressions

Solve quadratic equations by factorisation

The highest common factor
Solve $9 x^{2}-27 x=0$ of $9 x^{2}$ and $27 x$ is $9 x$
$9 x(x-3)=0$
$9 x=0 \quad x-3=0$
$x=0 \quad x=3$

Solve $x^{2}+x-20=0$

$$
(x+5)(x-4)=0
$$

$$
x+5=0
$$

$$
-4=0
$$

$$
x=-5 \quad x=4
$$

Solve $x^{2}=2 x+15$
Rearrange
$x^{2}-2 x-15=0$
$(x-5)(x+2)=0$
$x-5=0 \quad x+2=0$
$x=5 \quad x=-2$

Solve equations equal to zero

$3 x+4$	$=0$
-4	-4
$3 x$	$=-4$
$\div 3$	$\div 3$
x	$=\frac{-4}{3}$

$$
\begin{aligned}
& 9 x(x-3)=0 \\
& 9 x=0 \\
& x=3=0 \\
& x=0
\end{aligned} \quad x=3
$$

One or both of terms would have to
equal 0

\[

\]

Year 11 - Algebra.
 changing the subject

What do I need to be able to

 do?- Solve linear equations

Solve inequalities

- Form and solve equations and inequalities in context of shape Change the subject formula (Simple/known/complex)

Keywords

Equation: shows that two expressions are equal, it will have an equals sign =
Solve: find a numerical value that satisfies an equation
Inequality: an inequality compares two values showing if one is greater than, less than or equal to another
Change: Rearrange the equation
Rearrange: Change the order
Inverse operation: the operation that reverses the action

Solve inequalities

Solving inequalities has the same method as
equations.

R

$5(x+4)<3(x+2)$
$5 x+20<3 x+6$ $2 x+20<6$ $2 x<-14$

Check it! $x<-7$
$5(-8+4)<3(-8+2)$ $5(-4)<3(-6)$ $-20<-18$
-2015 smialer than -18

Change the subject of formula

x	
y	z

$x=y+z$
Rearrange to make y the subject $y=x-z$
$y \longrightarrow+z \longrightarrow x$
$y \longleftarrow-z \longleftarrow x$

Using inverse operations or fact familes will guide you through rearranging formulae

Rearranging can also be checked by substitution
h an equation (find x)

$4 x-3=9$	$x y-s=a$
+3	+3
$4 x=12$	$x y=a+s$
$\div 4$	$\div 4$
$x=3$	

The steps are the same for solving and rearranging
Rearranging is often needed when using $y=m x+c$
eg Find the gradient of the line $2 y-4 x=9$
Make y the subject first $y=\frac{4 x+9}{2} \quad$ Gradient $=\frac{4}{2}=2$

Showing inequality solutions on a number line

Form and solve equations and inequalities from shape

The area of the trapezium is $25 \mathrm{~cm}^{2}$. Find x.

$$
\begin{aligned}
\frac{1}{2}(x+4) \times 5 & =25 \mathrm{~cm}^{2} \\
5(x+4) & =50 \\
5 x+20 & =50 \\
5 x & =30 \\
x & =6 \mathrm{~cm}
\end{aligned}
$$

Year 11 - Algebra...

What do I need to be able to do?

- Use function machines (R)
- Use function notation
- Work with composite functions (H)
- Work with inverse functions (H)

Keywords

Input: a number/variable to put into an expression/function
Output: the result of a function
Function: a relationship between two sets of numbers - the input and output Inverse: the opposite function
Variable: A symbol or letter for an unknown value
Composite: A function made of other functions. The output of one is the input of another
Rearrange: change the subject

Function machines

Takes an input value, performs some operations and produces an output value.

Function notation

$$
f(x)=3 x+2
$$

The function f is defined in terms of the
Functions don't always need to be $f(x)$ they can be given by any letter... variable x

$$
g(x)=3 x^{2}-x-7
$$

To work out the value of f substitute the x value into $3 x+2$
e.g. $f(2)=3(2)+2$
$=8 \quad$ 。

$$
\begin{aligned}
g(4) & =3 \times 4^{2}-4-7 \\
& =3 \times 16-4-7 \\
& =48-4-7 \\
& =37
\end{aligned}
$$

Composite functions

A combination of two or more functions to create a new function
$f g(x)$ is the composite function that substitutes the function $g(x)$ into the function of $f(x)$
$f g(x) \ldots$ means 'do g first, then f
$g f(x) \ldots$ means 'do f first, then g

$$
f(x)=5 x-3 \quad g(x)=\frac{1}{2} x+1
$$

a) What is $\boldsymbol{f g}(4)$?

$$
\begin{aligned}
& g(4)=\frac{1}{2} \times 4+1 \\
& =3 \\
& f(3)=5 \times 3-1 \\
& =14
\end{aligned}
$$

Therefore:
$f g(4)=14$

$$
\begin{aligned}
& \text { b) What is } \boldsymbol{f} \boldsymbol{g}(\boldsymbol{x}) \text { ? } \\
& \qquad \begin{aligned}
f g(x) & =5\left(\frac{1}{2} x+1\right)-3 \\
& =\frac{5}{2} x+5-3 \\
& f g(x)=\frac{5}{2} x+2
\end{aligned}
\end{aligned}
$$

 Inverse functions $\quad f^{-1}(x)$ - A function that performs the opposite process of the original function "Really similar to changing the subject of formula"

Find $f^{-1}(x)$ given $f(x)=3 x+4$

$$
\begin{aligned}
y & =3 x+4 \\
y-4 & =3 x \\
\frac{y-4}{3} & =x \quad f^{-\mathbf{1}}(\boldsymbol{x})=\frac{\boldsymbol{x}-\mathbf{4}}{3}
\end{aligned}
$$

RULES FOR FINDING THE INVERSE $f^{-1}(x)$:
Step 1: Write out the function as $y=$
Step 2: Swap the x and y
Step 3: Make y the subject
Step 4: Instead of $y=$ write $\mathrm{f}^{-1}(x)=$

PSHE

Year 11 - PSHE Studies Knowledge Organiser - Health and Wellbeing and Living in the Wider World

Key Terms	
Augmented Reality	A technology that superimposes a computer-generated image on a user's view of the real world, thus providing a composite view
Virtual Reality	The computer-generated simulation of a three-dimensional image or environment that can be interacted with
Botox	A bacteria substance which is injected into specific muscles (normally forehead, outer part of eyes and muscles of the mouth and jaw)
Fillers	Injections (often hyaluronic acid) to make areas of the face to look fuller, skin look plumper \& younger
Digital Footprint	The trace you leave behind when using the internet
The Dark Web	the name given to specific websites which are not accessible through normal search engines. Special software or networks are needed in order for it to be accessed.

PSHE covers a variety of topics that focus on developing understanding in four key areas: personal, social, health and economic.

Online Reputation

When you go online you leave a footprint. Everything you interact with leaves a trace. Often what people see about you online helps to form their first impressions of you. More and more, employers are looking up potential employees to see what they can find on them online. Therefore, it's important that what people can see online about you shows you in a good light.

CVs
 A CV (Curriculum Vitae) is a document that you can use to apply for jobs.

It should be no more than two sides of A4. It should include your contact information, qualifications, skills, references and work experience. It should have no spelling or grammar mistakes.

Personal Statement
A personal statement is a written account of yourself. It is often used for job or college applications.

Key Skills

- Active listening and communication
- Teamwork
- Negotiation and self advocacy
- Leadership
- Presentation and debate

Job Interviews

If your CV or application is successful, the next step is that you may be asked to interview.

This is usually a face-to-face meeting with the potential employer.

They will ask you questions about yourself and your ability to do the job. They may also ask you to perform some tasks to test your skills.

Physics

Vehicle Safety

Threshold Concept

Cars have safety features to reduce impact forces

Safety Features in Cars

Newtons Second Law

Newtons Third Law Newton's Third Law

Keywords

Newtons Laws - Three guiding principles stating the movement and reactions of all things due to physics
Impact forces - The forces occurring when two objects collide
Momentum - A measure of how difficult it is to stop a moving objects_-_-_-_-_-_-_-_-_
Stopping Distances

-97mins

IT TAKES NEARLY TWICE AS FAR TO STOP at 70 mph AS IT DOES TO STOP at 50 mph

Equations for this topic

Force $=$ Mass \times Acceleration
Momentum $=$ Mass \times Velocity

RSE

Year 11 - RSE - Respectful Relationships/Sexual and Intimate Relationships

Key Terms

Asexuality	Having little or no sexual feelings or desires for others
Monogamy	The most common form of relationship - a sexual relationship that has developed between two people only
LGBTQIA+	Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual +
Gender Expression	The way we show our gender to the world
Toxic Masculinity	An expression of manhood which depends on being tough, unemotional, strong physically or financially, and powerful
STIs	Sexual Transmitted Infections
Chlamydia	A common STI which can cause fertility problems in females

RSE covers a variety of topics and focuses on developing understanding of different aspects of relationships. This includes with yourself, friendships, romantic and sexual relationships

Child-on-Child Abuse

Child-on-Child Abuse (previously referred to as Peer-onPeer Abuse) includes, but is not limited to:

- Physical and sexual abuse
- Sexual harassment and violence
- Emotional harm
- Online and offline bullying
- Teenage relationship abuse

It can even include grooming children for sexual and criminal exploitation.

Key Skills

- Active listening and communication
- Teamwork
- Presentation and debate

Sexual Health

Sexual health is a state of physical, mental and social well-being in relation to sexuality.

This includes thinking about: contraception, consent and coercion

Contraception

Condom - Made of latex, put on to an erect penis before penetration

Abstinence - Restraining yourself from having any form of sexual contact

Contraceptive Pill - Contains hormones and is taken daily (often at the same time every day) by women. Stops the lining of the Womb thickening

Implant - A small tube inserted under the skin (usually in the arm). It releases hormones which prevent pregnancy

Triple Science

Threshold Concept

How do we identify a substance?
Testing for metal ions
IMetal ions will form coloured precipitates Iwhen they react with sodi um hydroxide.
 Testing for carbonate ions $\mathrm{CO}_{3}{ }^{2}$ $\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}^{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

I Flame emission spectroscopy

Keywords
Pure - a substance made from just one element of compound
Impure - a substance made from more than one element or compound
Analyse - to find the chemical composition of a substance
Sample - a portion of a substance taken from a larger amount

Testing for Halide ions $\overline{\left(\mathrm{Cl}^{-},\right.} \overline{\left.\mathrm{Br}^{-}, \overline{\mathrm{I}^{-}}\right)}$

[^0]: Equations for this topic

