

Line of best fit should go through the mean point (\bar{x}, \bar{y})
The equation of the line $y=a x+b$

- has gradient a
- intercept on the y axis is $(0, b)$

Probability of an event (if possible outcomes are equally
likely)

$$
=\frac{\text { number of successful outcomes }}{\text { total number of possible outcomes }}
$$

Expected frequency of event $A=P(A) \times$ number of trials
Seasonal variation at a point = actual value - trend value Estimated mean seasonal variation for any season = mean of the seasonal variations for that season
Predicted value $=$ trend line value + estimated mean seasonal variation

Estimated probability $=$

number of trials with successful outcomes total number of trials
Risk of event $=\frac{\text { number of trials in which event happens }}{\text { total number of trials }}$
Relative risk for the group $=\frac{\text { risk for those in the group }}{\text { risk for those not in the group }}$

$$
\text { Index numbers }=\frac{\text { price }}{\text { base year price }} \times 100
$$

Weighted index numbers $=$

$\frac{\text { current weighted mean price }}{\text { base year weighted mean price }} \times 100$

Chain base index numbers =

$\frac{\text { price }}{\text { last year's price }} \times 100$

Normal distribution:

$68 \% \pm$ one standard deviation of the mean $95 \% \pm$ two standard deviation of the mean $99.8 \% \pm$ three standard deviation of the mean

Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$

Mean (μ) and variance (σ^{2})
Variance $=(\text { standard deviation }-\sigma)^{2}$

