Motion

Threshold Concept

| Speed equals distance travelled in a given | time

Speed, distance, time

I -Speed is measured in metres per second (m/s)

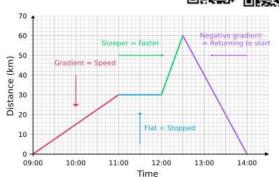
1-Distance is measured in | metres (m)

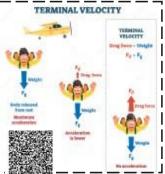
I-Time is measured in second

(s)

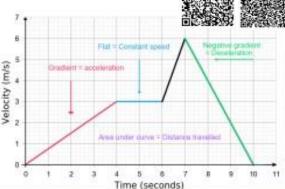
- Speed: Distance travelled in a certain time
- Distance: how far an object has travelled. It is a scalar quantity
- Time: how long something takes
- Metres a unit measurement of distance (m)
- Seconds: a unit measurement of time


Scalar and vector quantities

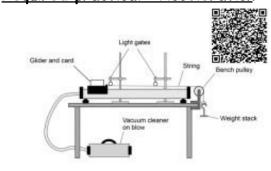

Scalar - a measurement of something. They only have MAGNITUDE (size) Vector - a measurement of something. They have



Terminal | velocity


DIRECTION& MAGNITUDE (size)

At terminal Ivelocity, the object moves at a steady speed in a constant direction because the **resultant** force acting on it is



Velocity - Time graphs

Required practical - Acceleration

Equations for this topic

Speed = Distance ÷ Time

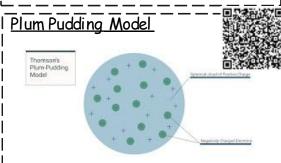
Change in Velocity = Acceleration x Time

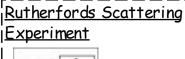
Force = Mass X Acceleration

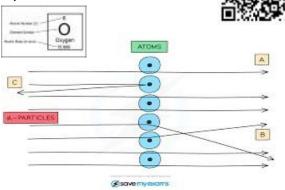
Atomic Structure

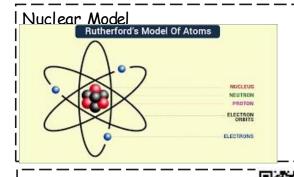
Threshold Concept

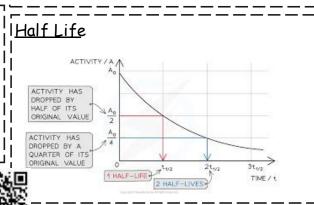
Identify that there are three types of radiation


Alpha, Beta and Gamma α β Paper Aluminium Lead


Keywords


Atom - the smallest particle of a chemical element that can exist Proton - positively charged particle


Neutron - Particle with no charge Electron - Negatively charged particle


Wave - Energy transfer method

Uses and Dangers of Radiation

	Irradiation	Object becomes radioactive and emits radiotion		
Description	Object is exposed to radiation but does not become radioactive			
Source	Danger is from radiation emitted outside the object	Danger from radiation emitted within the abject		
Prevention	Prevented by using shielding, such as lead clothing	Prevented by safe handling of sources and dirtight safety clothing		
Couses	Caused by the presence of radioactive sources outside the body	Caused by inhalation in ingestion of radioacti sources		

<u>uations for this top</u>ic

235 92 U	decay by releasing an alpha particle	4 2α	+	²³¹ ₉₀ Th
14 6 C	decay by releasing an beta particle	⁰ ₋₁ β	+	14 7 N
235 92 U	decay by releasing a gamma wave	0 γ 0	+	²³⁵ U