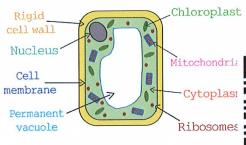

Year 7 - Cells

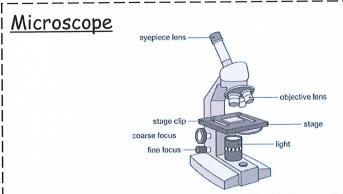
Threshold Concept


Understand that all living things are made of cells

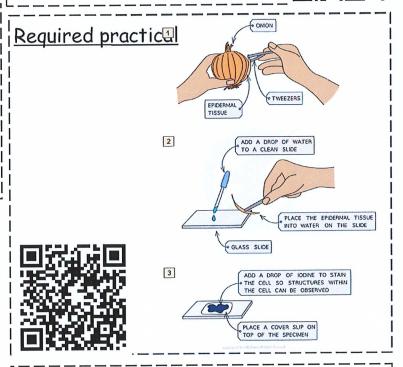
Structure of animal cell

Structure of plant cell

Keywords


Animal Cell - Building block of all animal life

Plant Cell - Building block of plant life Microscope - Utensil used to enlarge objects


Prokaryote - Cell without nucleus Eukaryote - Cell containing a nucleus Cell - Basic building block

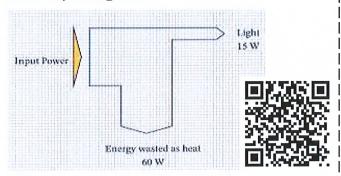
Comparing cells

Organelle	Responsible for	
Nucleus	Housing DNA, 'brain' of the cell	
Mitochondria	Energy production, 'power house' of the cell	
Golgi apparatus	Setting, packaging and transport of proteins	
Endoplasmic reticulum	Synthesis and processing of proteins, lipid expression	
Chioroplast	Photosynthesis, only present in plants	
Flagellum	Locomotion and sensory functions	
Vacuole	Storage and maintaining homeostasis	
Lysosome	Digestions of larger molecules	
Peroxisome	Degradation of hydrogen peroxide	
Ribosome	Synthesis of proteins	
Proteasome	Break down of proteins with expired func	

Equations for this topic

Image Size = Actual Size x Magnification

Energy


Threshold Concept

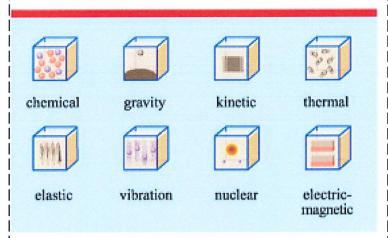
Energy can't be created or destroyed, it can only be transferred from one store to another in a closed system

Movement between stores

Energy Transfer	Description	
Mechanical	When a force acts on a body e.g. a collision	
Electrical	Electricity can transfer energy from a power source, st as a cell, delivering it to components within a circuit	
Heating	Thermal energy can be transferred by conduction, convection or radiation	
Radiation Light and sound carry energy and can transfer this between two points		

Sankey Diagrams

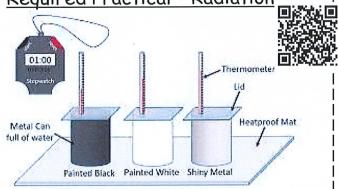
Keywords

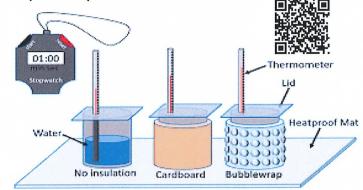

Energy - moved between stores during transfers

Store - A temporary housing for energy

Transfer - The movement of energy between stores

Useful - The energy store that you wish for the energy to flow into Dissipated - The store that energy flows into that is not useful or wasted


Energy Stores


Conservation of energy

Required Practical - Radiation

Required practical - Thermal Insulation

Equations for this topic

Work = Force x Distance

Power = Work done/ time

<u>Efficiency = useful energy output/total</u> <u>energy input</u>

Foundations of chemistry

Threshold Concept

All matter is made of particles

States of matter:

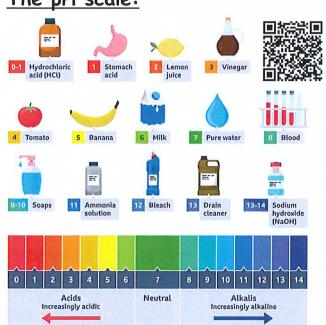
State	Solid	Liquid	Gas
Closeness of particles	Very close	Close	Far apart
Arrangement of particles	Regular pattern	Randomly arranged	Randomly arranged
Movement of particles	Vibrate around a fixed position	Move around each other	Move quickly in all directions
Energy of particles	Low energy	Greater energy	Highest energy
2D diagram	888888	202022	0 0
	888888	33353	

Atoms and compounds:

Elements contain just one type of atom.

Oxygen (O_2)

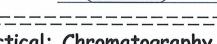
Compounds contain different types of atom bonded together. Carbon dioxide (CO2)


Pure substances:

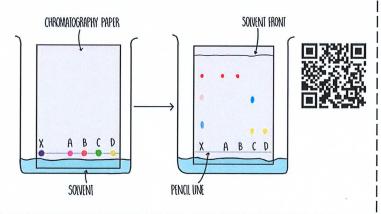
Pure substances are made from only one chemical element or one compound.

For example, salt is a pure substance 🔳 made only of sodium chloride.

The pH scale:


<u>Keywords</u>

- Particles: The tiny things that all materials are made from. The smallest unit of matter.
- Atom: Atoms are the building blocks of all matter. Everything is made of atoms - even yourself. They are the smallest particle of an element, which are far too small to see.
- Solid: Have a fixed shape and cannot flow, because their particles cannot move from place to place, cannot be compressed (squashed), because their particles are close together and have no space to move into.
- Liquid: Flow and take the shape of their container, because their particles can move around each other, cannot be compressed, because their particles are close together and have no space to move into
- Gas: Flow and completely fill their container, because their particles can move quickly in all directions, can be compressed, because their particles are far apart and have space to move into


Solubility:

- Some solids dissolve in water to make a solution.
- These solids are soluble.
- A solution is made from a solute (usually a solid) and a solvent (liquid).
- Some gases, such as oxygen and carbon dioxide, can also dissolve in water.

Required practical: Chromatography

Equations for this topic:

distance travelled by substance (B) R_i value = distance travelled by solvent (A)