YEAR 10 - SIMILARITY... @whisto_maths Congruence, similarity ε enlargement

What do I need to be able to do?

By the end of this unit you should be able
to:

- Enlarge by a positive scale factor
- Enlarge by a fractional scale factor
- Identify similar shapes
- Work out missing sides and angles in similar shapes
- Use parallel lines to find missing angles
- Understand similarity and congruence

Keywords

Enlarge: to make a shape bigger (or smaller) by a given mutipilier (scale factor)
Scale Factor: the mutipitier of enlargement
Centre of enlargement: the point the shape is enlarged from
Simiar: when one shape can become another with a reflection, rotation, enlargement or translation.
Congruent: the same size and shape
Corresponding: tems that appear in the same place in two similar situations
Paralle: straight lines that never meet (equal gradients)

Positive scale factors R
Enlargement from a point
Enlarge shape A by SF 2 from $(0,0)$

The shape is enlarged by 2

The distance from the point enlarges by 2

1) Identify similar shapes

Information in similar shapes

Co-interior angles

As angles on a line add up to 180° co-interior angles can also be calculated from applying alternate/ corresponding rules first

Similar triangles

1

Conavence and Similarity

Congruent shapes are identical - all corresponding sides and angles are the same size

Because al angles are the same, but all sides are enlarged by 2 OBC and HU are similar

I Conditions for congruent triangles
| | Triangles are congruent if they satisfy any of the following conditions
1
I I Ill three sides on the triangle are the same size

angle-side-angle

Two angles and the side connecting them are equal in two triangles

Side-angle-side
Two sides and the angle in-between them are equal in two
I triangles (it will also mean the third side is the same size on
I both shapes)
Right angle-hypotenuse-side
I The triangles both have a right angle, the hypotenuse and I one side are the same

YeAR 10 －SIMLARITY．．．

＠whisto＿maths

Trigonometry

$a: b$
$x: 100$

$a: b$ 0.07 ：x $0.07: 0.14$

When the angle is the same the ratio of sides a and b will also remain the same II

Keywords

II Enlarge：to make a shape bigger（or smaller）by a given mutipilier（scale factor）
II Scale Factor：the mutipier of enlargement
II Constant：a value that remains the same
II Cosine ratio：the ratio of the length of the adjacent side to that of the hypotenuse．The sine of the complement．
I｜Sine ratio：the ratio of the length of the opposite side to that of the hypotenuse．
II Tangent ratio：the ratio of the length of the opposite side to that of the adjacent side．
II Inverse：function that has the opposite effect．
II Hypotenuse：longest side of a right－angled triangle．It is the side opposite the right－angle

Hypotenuse，adjacent and opposite ONLY right－angled trangles are abeled in OPPOSITE
II always opposite an acute angle
II Useful to label second
II Position depend upon the angle
II
in use for the question

Tangent ratio：side lengths

$\operatorname{Tan} \theta=\frac{\text { opposite side }}{\text { adjacent side }}$

Sin，Cos，Tan：Angles
Inverse trigonometric functions

Sin and Cos ratio：side lengths

yEAR 10 －DEVELOPING ALGEBRA． Representing solutions of equations and ＠uhisto＿maths
 What do I need to be able to do？
 By the end of this unit you should be able to：
 －Form and solve equations and inequalities
 －Represent and interpret solutions on a number line as inequalities
 Draw straight line graphs and find solutions to equations
 Form and solve equations and inequalities with unknowns on both sides
 Keymords
 Solution：a value we can put in place of a variable that makes the equation true
 Variable：a symbol for a number we don＇t know yet．
 Equation：an equation says that two things are equal－it will have an equals sign $=$
 Expression：numbers，symbols and operators grouped together to show the value of something
 Identity：An equation where both sides have variables that cause the same answer includes \equiv Linear：an equation or function that is the equation of a straight line
 Intersection：the point that two lines meet
 Inequality：an inequality compares two values showing if one is greater than，less than or equal to
 another．

Form and solve inequalties R
$3(2 x+4)=30$

Expand the brackets
$6 x+12=30$
$6 x=18$

Solve
$x \longleftarrow-3 \longleftarrow-2 \longleftarrow<$
 $x>3$

Solutions on a number line

Includes the value

includes the value I

Values less than or equal to 3 but also more than－I

This includes the integer values $0,1,2,3$

Pbtting straight ine araphs \mathbb{B}

Equations：unknown on both sides R
$8 x+5=4 x+13$

$8 x+5=4 x+13$
$-4 x \quad-4 x$
$4 x+5=13$
$-5 \quad-5$
$\div 4 \begin{gathered}4 x=8 \\ x=2\end{gathered} \div 4$
ーニニニニニニニニニニニニニニニニニニニー 7
Inequalities：unknown on both sides

$$
8 x+5 \leq 4 x+13] \longrightarrow x \leq 2
$$

any value 2 or less will satisfy this inequality

YEAR 10 - DEVELOPING ALGEBRA.
 @uhisto_maths

What do I need to be able to do?
By the end of this unit you should be able to:

- Determine whether $(x y)$ is a solition
- Solve by substituting a known variable
- Solve by substituting an expression
| - Solve graphically
I - Solve by subtracting adding equations
- Solve by adjusting equations
- Form and solve linear simutaneous

Keywords

Solution: a value we can put in place of a variable that makes the equation true
I V Variable: a symbol for a number we don't know yet.
I Equation: an equation says that two things are equal - it will have an equals sian $=$
I Substitute: replace a variable with a numerical value
I LCM: lowest common mutiple (the first time the times table of two or more numbers match)
1 Eliminate: to remove
Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign) Coordinate: a set of values that show an exact position
I Intersection: the point two lines cross or meet.

Is (x, y) a solution? \times and y represent values
that can be substituted into that can be substituted into an equation

Substituting known varababes.
Stephanie knows the point $x=4$ les on that line. Find the value for y.
a line has the equation $3 x+y=14$
$3 x+y=14$

$3(4)+y=14$

Two different variables, two solutions
$12+y=14$
$x=4$

$$
y=2
$$

ISOlve by subtraction
Solve craphicialy

$x=4$
$y=3$
addition makes zero pairs II Solve by adjusting one

Solve by addition

$3 x+2 y$	$=16$
$+6 x-2 y$	$=2$
$9 x$	$=18$
$\div 9$	$\div 9$

$$
3 x+2 y=16
$$

$$
3(2)+2(y)=16
$$

$$
6+2 y=16
$$

$$
-6 \quad-6
$$

$$
2 y=10
$$

$$
y=5
$$

By proportionally adjusting one of
29

Solve by adjusting one	12
	$\stackrel{\square}{\square}$
	n
	n n 1 1 j
$2 h+2 j=29$	$\xrightarrow{ }$
	29
	24
$2 h+2 j=24$	$\stackrel{\square}{\square+1}$
$2 h+2 j=29$	n n i i n
$2 h+2 j=29$	n n i j i
	$\xrightarrow[29]{ }$
By proportionally adjusting one of	29
the equations - now solve the	
simuttaneous equations choosing	
an addition or subtraction method	

Solve by adjusting both
$2 x+3 y=39$
$5 x-2 y=-7$

Use LCM to make equivalent x OR y values Because of the negative values using zero pairs and y values is chosen choice

$y=5$

